精英家教網 > 初中數學 > 題目詳情

如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時針旋轉90°至DE,連接AE、CE.若S△ADE=3,CE=數學公式,則梯形ABCD的面積是________.

7
分析:先過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,由旋轉的性質可知△CDF≌△EDG,從而有CF=EG,由△ADE的面積可求EG,得出CF的長,由矩形的性質得BF=AD,從而求出BC的長,再根據∠CDE=90°,得出CD2+DE2=CE2,求出CD的長,最后根據勾股定理求出DF的值,即可求出梯形ABCD的面積.
解答:解:過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,
由旋轉的性質可得:CD=ED,∠EDG+∠CDG=∠CDG+∠FDC=90°,
在△CDF和△EDG中,
,
∴△CDF≌△EDG,
∴CF=EG,CD=DE,
∵S△ADE=AD×EG=3,AD=2,
∴EG=3,則CF=EG=3,
∵四邊形ABFD為矩形,
∴BF=AD=2,
∴BC=BF+CF=2+3=5,
∵∠CDE=90°,
∴CD2+DE2=CE2,
∴2CD2=CE2
∴2CD2=(2,
∴CD=,
∴DF===2,
∴梯形ABCD的面積是:(AD+BC)•DF=(2+5)×2=7;
故答案為:7.
點評:本題考查了直角梯形、全等三角形的判定與性質、勾股定理和旋轉的性質,解題的關鍵是通過DC、DE的旋轉關系,作出旋轉的三角形,再根據旋轉的性質求出各邊的長.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網ABCD外作等邊三角形ADF,點E是直角梯形ABCD內一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習冊答案