【題目】“分塊計數(shù)法”:對有規(guī)律的圖形進行計數(shù)時,有些題可以采用“分塊計數(shù)”的方法.

例如:圖16個點,圖212個點,圖318個點,…,按此規(guī)律,求圖8、圖有多少個點?

我們將每個圖形分成完全相同的6塊,每塊黑點的個數(shù)相同(如圖),這樣圖1中黑點個數(shù)是個;圖2中黑點個數(shù)是個;圖3中黑點個數(shù)是個;…,所以容易求出圖8、圖中黑點的個數(shù)分別是_______________

請你參考以上“分塊計數(shù)法”,先將下面的點陣進行分塊(畫在答題卡上),再完成以下問題:

1)第6個點陣中有______個圓圈;第個點陣中有______個圓圈.

2)小圓圈的個數(shù)會等于331嗎?請求出是第幾個點陣.

【答案】48;6n;(191;;(2)會;第11個點陣

【解析】

根據(jù)規(guī)律可求得圖8中黑點個數(shù)和圖n中黑點個數(shù);
1)第2個圖中2為一塊,分為3塊,余1,第3個圖中3為一塊,分為6塊,余1;按此規(guī)律得:第6個點陣中6為一塊,分為15塊,余1,得第n個點陣中有:n×3n-1+1=3n2-3n+1;
2)令3n2-3n+1=331,方程有解則存在這樣的點陣,據(jù)此解答.

解:圖8中黑點個數(shù)是6×8=48個;圖n中黑點個數(shù)是6n個;

1)如圖所示:第1個點陣中有:1個,
2個點陣中有:2×3+1=7個,
3個點陣中有:3×6+1=19個,
4個點陣中有:4×9+1=37個,
5個點陣中有:5×12+1=61個,

6個點陣中有:6×15+1=91個,

n個點陣中有:n×3n-1+1=3n2-3n+1,
故答案為:91,3n2-3n+1

23n2-3n+1=331,
n2-n-110=0
n-11)(n+10=0,
n1=11,n2=-10(舍),
∴小圓圈的個數(shù)會等于331,它是第11個點陣.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】快遞公司為提高快遞分揀的速度,決定購買機器人來代替人工分揀,兩種型號的機器人的工作效率和價格如表:

型號

每臺每小時分揀快遞件數(shù)()

1000

800

每臺價格(萬元)

5

3

該公司計劃購買這兩種型號的機器人共10臺,并且使這10臺機器人每小時分揀快遞件數(shù)總和不少于8500

(1)設購買甲種型號的機器人x臺,購買這10臺機器人所花的費用為y萬元,求yx之間的關系式;

(2)購買幾臺甲種型號的機器人,能使購買這10臺機器人所花總費用最少?最少費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌電腦銷售公司有營銷員14人,銷售部為制定營銷人員月銷售電腦定額,統(tǒng)計了這14人某月的銷售量如下(單位:臺):

銷售量

200

170

130

80

50

40

人數(shù)

1

1

2

5

3

2

1)該公司營銷員銷售該品牌電腦的月銷售平均數(shù)是 臺,中位數(shù)是 臺,眾數(shù)是 臺.

2)銷售部經(jīng)理把每位營銷員月銷售量定為90臺,你認為是否合理?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題)若a+b10,則ab的最大值是多少?

(探究)

探究一:當ab0時,求ab值.

顯然此時,ab5,則ab5×525

探究二:當ab=±1時,求ab值.

ab1,則ab+1

由已知得b+1+b10

解得 b,

ab+l+1

ab

ab=﹣1,即ba1,由可得,b ,a

ab

探究三:當ab=±2時,求ab值(仿照上述方法,寫出探究過程).

探究四:完成下表:

ab

3

2

1

0

1

2

3

ab

   

   

25

   

   

(結論)若a+b10,則ab的最大值是   (觀察上面表格,直接寫出結果).

(拓展)若a+bm,則ab的最大值是   

(應用)用一根長為12m的鐵絲圍成一個長方形,這個長方形面積的最大值是   m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形,,,則的值為(

A.6B.C.D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上的A、B、C三點所表示的數(shù)分別為a、b、1,且|a1|+|b1||ab|,則下列選項中,滿足A、B、C三點位置關系的數(shù)軸為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一輛轎車在經(jīng)過某路口的感應線BC處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應線之間距離BC6m,在感應線B、C兩處測得電子警察A的仰角分別為∠ABD18°,∠ACD14°.求電子警察安裝在懸臂燈桿上的高度AD的長.

(參考數(shù)據(jù):sin14°≈0.242,cos14°≈0.97tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O中,弦ACBD交于E,

1)求證:

2)延長EBF,使EFCF,試判斷CFO的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在噴水池的中心處豎直安裝一根水管,水管的頂端安有一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高點,高度為3m,水柱落地點離池中心3m,以水平方向為軸,建立平面直角坐標系,若選取點為坐標原點時的拋物線的表達式為,則選取點為坐標原點時的拋物線表達式為______,其中自變量的取值范圍是______,水管的長為______m

查看答案和解析>>

同步練習冊答案