【題目】下列方程中,沒有實數(shù)根的是( )
A.B.
C.D.
【答案】C
【解析】
分別計算四個方程的根的判別式△=b2-4ac,然后判斷各方程根的情況.
解:A、∵a=-1,b=-3,c=1,
∴△=b2-4ac=(-3)2-4×(-1)×1=13>0,
所以原方程有兩個不相等的實數(shù)根.
故A選項錯誤;
B、∵a=4,b= ,c=5,
∴△=b2-4ac=()2-4×4×5=0,
所以原方程有兩個相等的實數(shù)根.
故B選項錯誤;
C、∵a=2,b=,c=1,
∴△=b2-4ac=()2-4×2×1=-5<0,
所以原方程沒有實數(shù)根.
故C選項正確.
D、∵a=2,b=-3,c=1,
∴△=b2-4ac=(-3)2-4×2×1=1>0,
所以原方程有兩個不相等的實數(shù)根.
故D選項錯誤;
故選擇:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知一次函數(shù)y=ax+2與x軸、y軸分別交于點A,B,反比例函數(shù)y= 經(jīng)過點M.
(1)若M是線段AB上的一個動點(不與點A、B重合).當a=﹣3時,設點M的橫坐標為m,求k與m之間的函數(shù)關系式.
(2)當一次函數(shù)y=ax+2的圖象與反比例函數(shù)y= 的圖象有唯一公共點M,且OM= ,求a的值.
(3)當a=﹣2時,將Rt△AOB在第一象限內(nèi)沿直線y=x平移 個單位長度得到Rt△A′O′B′,如圖2,M是Rt△A′O′B′斜邊上的一個動點,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】你能求(x一1)(x99+x98+x97+…+x+1)的值嗎?
遇到這樣的問題,我們可以先思考一下,從簡單的情形人手,分別計算下列各式的值.
(1)(x-1)(x+1) =_____________;
(2)(x—1)( x2+x+1) =_____________;
(3)(x-1)(x3+ x2+x+1) =____________;
…
由此我們可以得到:
(4)(x一1)( x99+x98+x97+…+x+1) =___________,
請你利用上面的結論,完成下列的計算:
(5)299+298+297+…+2+1;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形
A.22B.24C.26D.28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A,B分別是x軸、y軸上的動點,點C,D是某個函數(shù)圖象上的點,當四邊形ABCD(A,B,C,D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.例如:如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.
(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;
(2)若某函數(shù)是反比例函數(shù)y= (k>0),他的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;
(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標 , 寫出符合題意的其中一條拋物線解析式 , 并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C按順時針方向旋轉(zhuǎn)至△A′B′C,使點A′落在BC的延長線上.已知∠A=27°,∠B=40°,則∠ACB′是( )
A.46°
B.45°
C.44°
D.43°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在連接A地與B地的線段上有四個不同的點D、G、K、Q,下列四幅圖中的實線分別表示某人從A地到B地的不同行進路線(箭頭表示行進的方向),則路程最長的行進路線圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A=90°,點D在線段BC上,∠EDB= ∠C,BE⊥DE,垂足E,DE與AB相交于點F.
(1)當AB=AC時,(如圖1),
① ∠EBF=°;
②求證:BE= 1 2 FD;
(2)當AB=kAC時(如圖2),求 的值(用含k的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com