【題目】喜歡探究的亮亮同學拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.

1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結(jié)果保留根號)

2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為,亮亮認為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,

【答案】1;(2)不同意,理由見解析

【解析】

1)設(shè)正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;

2)根據(jù)兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個正方形邊長的和,并與3比較即可解答.

解:(1)設(shè)正方形邊長為,則,由算術(shù)平方根的意義可知

所以正方形的邊長是

2)不同意.

因為:兩個小正方形的面積分別為,則它們的邊長分別為,即兩個正方形邊長的和約為,

所以,即兩個正方形邊長的和大于長方形的長,

所以不能在長方形紙片上截出兩個完整的面積分別為的正方形紙片.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°ABAC,直線m經(jīng)過點ABD⊥直線m,CE⊥直線m,垂足分別為點D、E.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABAC,D、AE三點都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結(jié)論DEBD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)拓展與應(yīng)用:如圖(3),DED、AE三點所在直線m上的兩動點(D、AE三點互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邵陽市到長沙的高鐵列車里程比普快列車里程縮短了75千米,運行時間減少了4小時,已知邵陽市到長沙的普快列車里程為306千米,高鐵列車平均時速是普快列車平均時速的3.5倍.

(1)求高鐵列車的平均時速;

(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會議,如果他買到當日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村老楊家有耕地和林地共24公頃,今年每公頃耕地純收入為5500元,每公頃林地純收入為6000元,耕地與林地的純收入共137000元,為保護生態(tài)環(huán)境,增加收入,老楊計劃將部分耕地改為林地(改后每公頃耕地,林地純收入不變),要使改后的純收入為140000元.問:

1)老楊家原有耕地,林地各多少公頃?

2)老楊應(yīng)將多少公頃耕地改為林地?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=Rt∠,以BC為直徑的⊙O交AB于點D,切線DE交AC于點E.

(1)求證:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB=2,MN⊥AB于點M,且AM=BM,P是射線MN上一動點,E,D分別是PA,PB的中點,過點A,M,D的圓與BP的另一交點C(點C在線段BD上),連結(jié)AC,DE.

(1)當∠APB=28°時,求∠B和 的度數(shù);
(2)求證:AC=AB.
(3)在點P的運動過程中
①當MP=4時,取四邊形ACDE一邊的兩端點和線段MP上一點Q,若以這三點為頂點的三角形是直角三角形,且Q為銳角頂點,求所有滿足條件的MQ的值;
②記AP與圓的另一個交點為F,將點F繞點D旋轉(zhuǎn)90°得到點G,當點G恰好落在MN上時,連結(jié)AG,CG,DG,EG,直接寫出△ACG和△DEG的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.
(1)如圖1,在半對角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO.∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點D作DG⊥OB于點H,交BC于點G.當DH=BG時,求△BGH與△ABC的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組做用頻率估計概率的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下的表格,

實驗次數(shù)

100

200

300

500

800

1000

2000

頻率

0.365

0.328

0.330

0.334

0.336

0.332

0.333

則符合這一結(jié)果的實驗最有可能的是(

A.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是梅花

B.拋一枚硬幣,出現(xiàn)反面的概率

C.袋子里有除了顏色都一樣3個紅球,2個白球,隨機摸一個球是白球的概率

D.拋一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)大于4

查看答案和解析>>

同步練習冊答案