【題目】已知:如圖在平面直角坐標系中,O為坐標原點,AB分別是y軸正半軸和x軸正半軸上的點,OA=OB=a,a滿足等式2a2×16=64

1)求點A的坐標;

2)動點CO點出發(fā)沿x軸負半軸方向勻動,速度為每秒2個單位長度,過點BBDACD,交y軸于點E,設C的運動時間為t,用含t的代數(shù)式表示線段AE的長.

3)在(2)的條件下過點OOFBD于點F,交AB于點G,連接EG,是否存在t值,使∠AGE=OGB,若存在求出t值,若不存在說明理由.

【答案】1A0,4);(2AE=42t;(3t=1

【解析】

1)由同底數(shù)冪的乘法可求a的值;

2)由“AAS”可證△ACO≌△BEO,可得COOE2t,即可求AE的長;

3)過點AAHOB,交OG延長線于H,由“ASA”可證△AGE≌△AGH,可得AHAE42t,由“ASA”可證△AOH≌△OBE,可得AHOE,即可求t的值.

1)∵2a2×16=64,

a2=2

a=4

OA=OB=a,

OA=OB=4

∴點A0,4),點B40);

2)如圖1

BDAC,AOBC

∴∠ACO+CBD=90,∠ACO+CAO=90

∴∠CBD=CAO,且AO=BO,∠AOC=BOE=90,

∴△ACO≌△BEOAAS),

CO=OE=2t

AE=AOOE=42t,

3)存在.

如圖2,過點AAHOB,交OG延長線于H

∴∠HAO=AOB=90

AO=BO,∠AOB=90

∴∠OAB=OBA=45,

∴∠HAG=OAB=45,且AG=AG,∠AGE=OGB=AGH

∴△AGE≌△AGHASA),

AH=AE=42t

OFBD

∴∠FOB+OBD=90,且∠AOH+FOB=90

∴∠AOH=OBD,且AO=OB,∠HAO=EOB,

∴△AOH≌△OBEASA),

AH=OE,

42t=2t,

t=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一副直角三角板拼在一起得四邊形ABCD,ACB=45°,ACD=30°,點ECD邊上的中點,連接AE,將ADE沿AE所在直線翻折得到AD′E,D′EACF點,若AB= 6cm,點D′BC的距離是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】服裝店購進一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件70元,經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.

(1)求出yx的函數(shù)關系式.

(2)求該服裝店要想銷售這批秋衣日獲利750元,售價應定多少元?

(3)請銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,點邊上一點,以為邊作等邊,連接.若,則

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,以點為圓心,長為半徑畫弧,與射線相交于點,連接,過點作,垂足為

1)線段與圖中現(xiàn)有的哪一條線段相等?你得出的結(jié)論是: ;

2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知:把RtABC和RtDEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm

如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速,在DEF移的同時,點P從ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移.當DEF的頂點D移動到AC邊上時,DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設動時間為t(s)(0<t<4.5).

解答下列問題:

(1)當t為何值時,點A在線段PQ的垂直平分線上?

(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.

(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列帶有坐標系的網(wǎng)格中,ABC的頂點都在邊長為1的小正方形的頂點上

(1) 直接寫出坐標:A__________B__________

(2) 畫出ABC關于y軸的對稱的DEC(點D與點A對應)

(3) 用無刻度的直尺,運用全等的知識作出ABC的高線BF(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB⊙O的直徑,CM⊙O于點C,∠BCM=60°,則∠B的正切值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程+2x+2k2=0有兩個不相等的實數(shù)根.

1)求k的取值范圍;

2)若k為正整數(shù),求該方程的根.

查看答案和解析>>

同步練習冊答案