【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
A. 30.6 B. 32.1 C. 37.9 D. 39.4
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=2x+12與x軸交于點A,與y軸交于點B,與直線y=x交于點C.
(1)求點C的坐標.
(2)若P是x軸上的一個動點,直接寫出當△POC是等腰三角形時P的坐標.
(3)在直線AB上是否存在點M,使得△MOC的面積是△AOC面積的2倍?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn):若每箱以50元的價格出售,平均每天銷售80箱,價格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關(guān)系式;
⑶.當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】英國曼徹斯特大學的兩位科學家因為成功地從石墨中分離出石墨烯,榮獲了諾貝爾物理學獎.石墨烯目前是世上最薄卻也是最堅硬的納米材料,同時還是導電性最好的材料,其理論厚度僅0.000 000 000 34米,將這個數(shù)用科學記數(shù)法表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:①aa2=_____;
②=_____;
③a0=_____(a≠0);
④=_____;
⑤﹣6a÷3a=_____;
⑥=_____;
⑦=_____;
⑧=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,⊙O為Rt△ABC的內(nèi)切圓,切點為D、E、F,則⊙O的半徑為( 。
A. cm B. 1cm C. cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com