【題目】如圖.在RtABC,∠C=90°,BC=3cmAC=4cm,⊙ORtABC的內(nèi)切圓切點(diǎn)為D、E、F,O的半徑為( 。

A. cm B. 1cm C. cm D. 2cm

【答案】B

【解析】

連接OD、OE、OF,

∵⊙O為△ABC的內(nèi)切圓,

∴AD=AE,BD=BF,CE=CF,OE⊥AC,OF⊥BC,即∠OFC=∠OEC=90°,

∵∠C=90°,

∴四邊形CEOF是矩形,

∵OE=OF,

∴四邊形CEOF是正方形,

設(shè)⊙O的半徑為rcm,則FC=EC=OE=rcm,

Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

∴AB==5cm,

∵AD=AE=AC-EC=4-r,BD=BF=BC-FC=3-r,

∴4-r+3-r=5,

解得 r=1,即⊙O的半徑為1cm,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行以助人為樂(lè),樂(lè)在其中為主題的演講比賽,比賽設(shè)一個(gè)第一名,一個(gè)第二名,兩個(gè)并列第三名.前四名中七、八年級(jí)各有一名同學(xué),九年級(jí)有兩名同學(xué),小蒙同學(xué)認(rèn)為前兩名是九年級(jí)同學(xué)的概率是,你贊成他的觀(guān)點(diǎn)嗎?請(qǐng)用列表法或畫(huà)樹(shù)形圖法分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α45°,旗桿底端D到大樓前梯坎底邊的距離DC20米,梯坎坡長(zhǎng)BC12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A. 30.6 B. 32.1 C. 37.9 D. 39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)學(xué)老師布置了這樣一道作業(yè)題:

在△ABC中,ABACBC,點(diǎn)D和點(diǎn)A在直線(xiàn)BC的同側(cè).BDBC,∠BACα,∠DBCβ,α+β120°,連接AD,求∠ADB的度數(shù).

小聰提供了研究:先從特殊問(wèn)題開(kāi)始研究:當(dāng)α90°,β30°時(shí),利用軸對(duì)稱(chēng)知識(shí),以AB為對(duì)稱(chēng)軸構(gòu)造△ABD的軸對(duì)稱(chēng)圖形△ABD,連接CD,然后利用α90°,β30°以及等邊三角形的相關(guān)知識(shí)可解決這個(gè)問(wèn)題.

1)請(qǐng)結(jié)合小聰研究,畫(huà)出當(dāng)α90°,β30°時(shí)相應(yīng)的圖形;

2)請(qǐng)結(jié)合小聰研究,求出當(dāng)α90°β30°時(shí)∠ADB的圖形;

3)請(qǐng)結(jié)合小聰研究,請(qǐng)解決數(shù)學(xué)老師布置的這道作業(yè)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)Ax軸上,∠B=120°,OA=2,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°OABC的位置,則點(diǎn)B的坐標(biāo)為( 。

A. , B. C. (2,-2) D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線(xiàn)上,且ED=EC,如圖.試確定線(xiàn)段AE與DB的大小關(guān)系,并說(shuō)明理由.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線(xiàn)段AE與的DB大小關(guān)系.請(qǐng)你直接寫(xiě)出結(jié)論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過(guò)點(diǎn)E作EFBC,交AC于點(diǎn)F.

(請(qǐng)你完成以下解答過(guò)程)

(3)拓展結(jié)論,設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線(xiàn)AB上,點(diǎn)D在直線(xiàn)BC上,且ED=EC.若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列的網(wǎng)格圖中.每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)試在圖中作出ABCA為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形AB1C1;

(2)若點(diǎn)B的坐標(biāo)為(-3,5),試在圖中畫(huà)出直角坐標(biāo)系,并標(biāo)出A、C兩點(diǎn)的坐標(biāo);

(3)根據(jù)(2)中的坐標(biāo)系作出與ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的圖形A2B2C2,并標(biāo)出B2、C2兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.

(1)的值與的長(zhǎng);

(2)若點(diǎn)為線(xiàn)段上一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過(guò)點(diǎn)EGEAB,交線(xiàn)段AC的延長(zhǎng)線(xiàn)于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案