【題目】如圖,△ABC中,∠A=20°,沿BE將此三角形對折,又沿BA′再一次對折,點C落在BE上的C′處,此時∠C′DB=74°,則原三角形的∠C的度數(shù)為( )
A.27°B.59°C.69°D.79°
【答案】D
【解析】
由折疊的性質(zhì)得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,則∠1=∠2=∠3,即∠ABC=3∠3,由三角形內(nèi)角和定理得∠3+∠C=106°,在△ABC中,由三角形內(nèi)角和定理得∠A+∠ABC+∠C=180°,得出∠3=27°,即可得出結(jié)果.
解:如圖所示:
∵△ABC沿BE將此三角形對折,又沿BA′再一次對折,點C落在BE上的C′處,
∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,
∴∠1=∠2=∠3,
∴∠ABC=3∠3,
在△BCD中,∠3+∠C+∠CDB=180°,
∴∠3+∠C=180°74°=106°,
在△ABC中,
∵∠A+∠ABC+∠C=180°,
∴20°+2∠3+106°=180°,
∴∠3=27°,
∴∠C=106°-∠3=79°.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉(zhuǎn)角α得到正方形OEFG.
(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式.
(2)若α為銳角,tanα= ,當AE取得最小值時,求正方形OEFG的面積.
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為 :1?若能,求點P的坐標;若不能,試說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,點是直線上一個動點(不與重合),點是邊上一個定點, 過點作,交直線于點,連接,過點作,交直線于點.
如圖①,當點在線段上時,求證:.
在的條件下,判斷這三個角的度數(shù)和是否為一個定值? 如果是,求出這個值,如果不是,說明理由.
如圖②,當點在線段 的延長線上時,(2)中的結(jié)論是否仍然成立?如果不成立, 請直接寫出之間的關(guān)系.
)當點在線段的延長線上時,(2)中的結(jié)論是否仍然成立?如果不成立,請直接 寫出之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)證明ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點M,N,以點A為圓心,AB長為半徑畫弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個數(shù)是( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)已知:如圖,△ABC中,D是AB的中點,E是AC上一點,EF∥AB,DF∥BE.
(1)猜想:DF與AE的關(guān)系是______.
(2)試說明你猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖象與x軸的兩個交點為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設(shè)該函數(shù)的圖象的頂點為C,與x軸交于A,B兩點,且△ABC的面積為1,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用長為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計).
(Ⅰ)求出 與 的函數(shù)關(guān)系式;
(Ⅱ)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com