【題目】先閱讀下列兩段材料,再解答下列問題:
(一)例題:分解因式:
解:將“”看成整體,設(shè),則原式,
再將“”換原,得原式;
上述解題目用到的是:整體思想,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法;
(二)常用因式分解的方法有提公因式法和公式法,但有的多項式只用上述一種方法無法分解,例如,我們細(xì)心觀察就會發(fā)現(xiàn),前面兩項可以分解,后兩項也可以分解,分別分解后會產(chǎn)生公因式就可以完整分解了.
過程:
,
這種方法叫分組分解法,對于超過三項的多項式往往考慮這種方法.
利用上述數(shù)學(xué)思想方法解決下列問題:
(1)分解因式:
(2)分解因式:
(3)分解因式:;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,sin∠BAC= ,點D是AC上一點,且BC=BD=2,將Rt△ABC繞點C旋轉(zhuǎn)到Rt△FEC的位置,并使點E在射線BD上,連接AF交射線BD于點G,則AG的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實情況,學(xué)校安排政教處在七年級學(xué)生中隨機抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學(xué)生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計圖.
請你根據(jù)以上信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學(xué)生,請你估計該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D,E分別在AC,AB上,BD與CE相交于點O,已知∠B=∠C,現(xiàn)添加下面的哪一個條件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標(biāo).
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售部有營銷員15人,銷售部為了制定關(guān)于某種商品的每位營銷員的個人月銷售定額,統(tǒng)計了這15人某月關(guān)于此商品的個人月銷售量(單位:件)如下:
個人月銷售量 | 1800 | 510 | 250 | 210 | 150 | 120 |
營銷員人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營銷員該月關(guān)于此商品的個人月銷售量的平均數(shù),并直接寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)假設(shè)該銷售部負(fù)責(zé)人把每位營銷員關(guān)于此商品的個人月銷售定額確定為320件,你認(rèn)為對多數(shù)營銷員是否合理?并在(1)的基礎(chǔ)上說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com