【題目】某校為了解本校的選修課教學,校教務處在七、八年級所有班級中,每班隨機抽取了6名學生,并對他們的選修課喜歡程度情況進行了問卷調查,喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項.現將統計結果繪制成如下兩幅不完整的統計圖.
請你根據以上提供的信息,解答下列問題:
(1)補全上面的條形統計圖和扇形統計圖;
(2)若接核七、八年級共有700名學生,請你估境該年級學生中對遠修課“不太喜歡”的有多少人?
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABCO的邊OC、OA,分別在x軸、y軸上,點E在邊BC上,將該矩形沿AE折疊,點B恰好落在邊OC上的F處,若OA=8,CF=4,則點E的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF.
證明:∵∠1=∠2(已知)
∠1=∠3,∠2=∠4( )
∴∠3=∠4( )
∴ ∥ ( )
∴∠C=∠ABD( )
又∵∠C=∠D(已知 )
∴∠D=∠ABD(等量代換)
∴AC∥DF( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩個大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫出的幾何圖形,,,,,,在同一條直線上,連接.
(1)請找出圖②中與全等的三角形,并給予證明(說明:結論中不得含有未標識的字母);
(2)求證:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線 與x軸交于點A,與直線 y=kx-3交于點C(c,6),直線 與y軸交于點B,連接AB.
(1)求k的值;
(2)求證:∠CAO=∠BAO;
(3)P為OA上一點,連結PB,M為PB中點,延長MO交直線AC于點N,若OP=x, ,求y關于x的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=20°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的等腰三角形的個數最多為( )
A.4個B.5個C.6個D.7個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料,回答問題
在邊長為1的正方形ABCD中,E是AB的中點,CF⊥DE,F為垂足.
(1)△CDF與△DEA是否相似?說明理由;
(2)求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線a:y=2x+4分別與x、y軸交于點A、C.將直線a豎直向下平移7個單位后得到直線b,直線b交直線AD:y=x+2于點E.
(1)若點Q為直線x軸上一動點,是否存在點Q,使△QDE的周長最小,若存在,求△QDE周長的最小值及點Q的坐標:
(2)已知點M是第一象限直線a上的任意一點,過點M作直線c⊥x軸,交直線b于點N,H為直線AD上任意一點,是否存在點M,使得△MNH成為等腰直角三角形?若存在,請直接寫出點H的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,P是對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接AP,EF.給出下列結論:①PD=DF;②四邊形PECF的周長為8;③△APD一定是等腰三角形;④AP=EF.其中正確結論的序號為( )
A.①②④B.①②C.①④D.①②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com