【題目】如圖 1,在等腰△ABC 中,AB=AC,點(diǎn) D,E 分別為 BC,AB 的中點(diǎn),連接 AD.在線段 AD 上任取一點(diǎn) P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當(dāng)點(diǎn) P 與點(diǎn) D 重合時(shí),x 的值為 0),PB+PE=y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y 隨自變量x 的變化而變化的規(guī)律進(jìn)行了探究. 下面是小明的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、計(jì)算,得到了 x 與 y 的幾組值,如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | 5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐標(biāo)系(圖 2),描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時(shí)點(diǎn) P 在圖 1 中的什么位置.
【答案】(1)4.5(2)根據(jù)數(shù)據(jù)畫圖見解析;(3)函數(shù) y 的最小值為4.2,線段AD上靠近D點(diǎn)三等分點(diǎn)處.
【解析】
(1)取點(diǎn)后測量即可解答;(2)建立坐標(biāo)系后,描點(diǎn)、連線畫出圖形即可;(3)根據(jù)所畫的圖象可知函數(shù)y的最小值為4.2,此時(shí)點(diǎn) P 在圖 1 中的位置為.線段 AD 上靠近 D 點(diǎn)三等分點(diǎn)處.
(1)根據(jù)題意,作圖得,y=4.5故答案為:4.5
(2)根據(jù)數(shù)據(jù)畫圖得
(3)根據(jù)圖象,函數(shù) y 的最小值為 4.2,此時(shí)點(diǎn) P 在圖 1 中的位置為.線段 AD 上靠近 D 點(diǎn)三等分點(diǎn)處.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC的平分線與∠ACB的外角的平分線相交于點(diǎn)P,連接AP.
(1)求證:PA平分∠BAC的外角∠CAM;
(2)過點(diǎn)C作CE⊥AP,E是垂足,并延長CE交BM于點(diǎn)D.求證:CE=ED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A. 一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形
B. 對角線相等的四邊形一定是矩形
C. 兩條對角線互相垂直的四邊形一定是菱形
D. 兩條對角線相等且互相垂直平分的四邊形一定是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,,,,是上一點(diǎn),是延長線上一點(diǎn),且.
(1)試說明:;
(2)在圖中,若點(diǎn)在上,且,試猜想、、之間的數(shù)量關(guān)系,并證明所歸納結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD=12cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度在射線AD上運(yùn)動;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度在射線CB上運(yùn)動.運(yùn)動時(shí)間為t,當(dāng)t=______秒(s)時(shí),點(diǎn)P、Q、C、D構(gòu)成平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出如下定義:對于⊙O 的弦 MN 和⊙O 外一點(diǎn) P(M,O,N 三點(diǎn)不共線,且點(diǎn) P,O 在直線 MN 的異側(cè)),當(dāng)∠MPN+∠MON=180°時(shí),則稱點(diǎn) P 是線段 MN 關(guān)于點(diǎn) O 的關(guān)聯(lián)點(diǎn).圖 1 是點(diǎn) P 為線段 MN 關(guān)于點(diǎn) O 的關(guān)聯(lián)點(diǎn)的示意圖.
在平面直角坐標(biāo)系 xOy 中,⊙O 的半徑為 1.
(1)如圖 2,已知 M(,),N( ,﹣),在 A(1,0),B(1,1),C(,0)三點(diǎn)中,是線段 MN 關(guān)于點(diǎn) O 的關(guān)聯(lián)點(diǎn)的是哪個點(diǎn);
(2)如圖 3,M(0,1),N(,﹣),點(diǎn) D 是線段 MN 關(guān)于點(diǎn) O 的關(guān)聯(lián)點(diǎn).
①求∠MDN 的大。
②在第一象限內(nèi)有一點(diǎn) E(m,m),點(diǎn) E 是線段 MN 關(guān)于點(diǎn) O 的關(guān)聯(lián)點(diǎn),判斷△MNE 的形狀,并直接寫出點(diǎn) E 的坐標(biāo);
③點(diǎn) F 在直線 y=﹣x+2 上,當(dāng)∠MFN≥∠MDN 時(shí),求點(diǎn) F 的橫坐標(biāo) x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)A和B.
(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;
(2)以線段AB為一邊在第一象限內(nèi)作□ABCD,其頂點(diǎn)D(, )在雙曲線 (>)上.
①求證:四邊形ABCD是正方形;
②試探索:將正方形ABCD沿軸向左平移多少個單位長度時(shí),點(diǎn)C恰好落在雙曲線 (>)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,E,F分別是BC,AC的中點(diǎn),以AC為斜邊作Rt△ADC,若∠CAD=∠BAC=45°,則下列結(jié)論:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正確的是_____(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù).
(1)求證:它的圖象與x軸必有兩個不同的交點(diǎn);
(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,O)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過A,B,C三點(diǎn),求扇形MAC的面積S;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,PD⊥x軸于D,使△PBD被直線BC分成面積比為1:2的兩部分?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com