分析 (1)證明△ADP≌△CDQ,即可得到結(jié)論:DP=DQ;
(2)證明△DEP≌△DEQ,即可得到結(jié)論:PE=QE;
(3)與(1)(2)同理,可以分別證明△ADP≌△CDQ、△DEP≌△DEQ.在Rt△BPE中,利用勾股定理求出PE(或QE)的長(zhǎng)度,從而可求得S△DEQ=$\frac{150}{7}$,而△DEP≌△DEQ,所以S△DEP=S△DEQ$\frac{150}{7}$.
解答 證明:(1)∵∠ADC=∠PDQ=90°,
∴∠ADP=∠CDQ.
在△ADP與△CDQ中,$\left\{\begin{array}{l}{∠DAP=∠DCQ=90°}\\{AD=CD}\\{∠ADP=∠CDQ}\end{array}\right.$
∴△ADP≌△CDQ(ASA),
∴DP=DQ.
(2)猜測(cè):PE=QE.
證明:由(1)可知,DP=DQ.
在△DEP與△DEQ中,$\left\{\begin{array}{l}{DP=DQ}\\{∠PDE=∠QDE=45°}\\{DE=DE}\end{array}\right.$
∴△DEP≌△DEQ(SAS),
∴PE=QE.
(3)解:∵AB:AP=3:4,AB=6,
∴AP=8,BP=2.
與(1)同理,可以證明△ADP≌△CDQ,
∴CQ=AP=8.
與(2)同理,可以證明△DEP≌△DEQ,
∴PE=QE.
設(shè)QE=PE=x,則BE=BC+CQ-QE=14-x.
在Rt△BPE中,由勾股定理得:BP2+BE2=PE2,
即:22+(14-x)2=x2,
解得:x=$\frac{50}{7}$,即QE=$\frac{50}{7}$.
∴S△DEQ=$\frac{1}{2}$QE•CD=$\frac{1}{2}$×$\frac{50}{7}$×6=$\frac{150}{7}$.
∵△DEP≌△DEQ,
∴S△DEP=S△DEQ=$\frac{150}{7}$.
點(diǎn)評(píng) 本題是四邊形綜合題,主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識(shí)點(diǎn).解本題的關(guān)鍵是判定△ADP≌△CDQ和△DEP≌△DEQ,試題難度不大,但要注意認(rèn)真計(jì)算,避免出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com