【題目】二次函數(shù)y=ax2+bx+ca0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線x=2,下列結(jié)論:(14a+b=0;(28a+7b+2c0;(3)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)Cy3)在該函數(shù)圖象上,則y1y3y2;(4)若方程ax+1)(x5=3的兩根為x1x2,且x1x2,則x1<﹣15x2.其中正確的結(jié)論有().

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

根據(jù)拋物線的對(duì)稱(chēng)軸為直線x=2,可判斷(1),利用x=-1時(shí),y=0,則a-b+c=0,結(jié)合對(duì)稱(chēng)軸可得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a,再根據(jù)拋物線開(kāi)口向下可判斷(2),利用拋物線的對(duì)稱(chēng)性得到C關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo),然后利用二次函數(shù)的增減性即可得到判斷(3),作出直線y=-3,然后依據(jù)函數(shù)圖象進(jìn)行判斷,即可判斷(4).

解:∵,

4a+b=0,故(1)正確.

∵拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),

a-b+c=0

又∵b=-4a,

a+4a+c=0,即c=-5a,

8a+7b+2c=8a-28a-10a=-30a,

∵拋物線開(kāi)口向下,

a0,

8a+7b+2c0,故(2)正確;

∵拋物線的對(duì)稱(chēng)軸為x=2,C,),

C關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng)的點(diǎn)坐標(biāo)().

-3,在對(duì)稱(chēng)軸的左側(cè),

yx的增大而增大,

,故(3)錯(cuò)誤.

方程ax+1)(x-5=0的兩根為x=-1x=5,

過(guò)y=-3x軸的平行線,直線y=-3與拋物線的交點(diǎn)的橫坐標(biāo)為方程的兩根,

依據(jù)函數(shù)圖象可知: 故(4)正確.

故選C..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn);拋物線過(guò),兩點(diǎn),與軸交于另一點(diǎn),拋物線的頂點(diǎn)為

1)求拋物線的解析式;

2)在直線上方的拋物線上有一動(dòng)點(diǎn),求出點(diǎn)到直線的距離的最大值;

3)如圖②,直線與拋物線的對(duì)稱(chēng)軸相交于點(diǎn),請(qǐng)直接寫(xiě)出的平分線與軸的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AHBEBF、DF、DGCG分別交于點(diǎn)P、QKM、N,設(shè)△BPQ、△DKM、△CNH的面積依次為、

1)求證:△BPQ∽△DKM∽△CNH;

2)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七、八、九年級(jí)共有1000名學(xué)生.學(xué)校統(tǒng)計(jì)了各年級(jí)學(xué)生的人數(shù),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.

1)將圖①的條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)圖②中,表示七年級(jí)學(xué)生人數(shù)的扇形的圓心角度數(shù)為 °

3)學(xué)校數(shù)學(xué)興趣小組調(diào)查了各年級(jí)男生的人數(shù),繪制了如圖③所示的各年級(jí)男生人數(shù)占比的折線統(tǒng)計(jì)圖(年級(jí)男生人數(shù)占比=該年級(jí)男生人數(shù)÷該年級(jí)總?cè)藬?shù)×100%).請(qǐng)結(jié)合相關(guān)信息,繪制一幅適當(dāng)?shù)慕y(tǒng)計(jì)圖,表示各年級(jí)男生及女生的人數(shù),并在圖中標(biāo)明相應(yīng)的數(shù)據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推廣陽(yáng)光體育“大課間”活動(dòng),我市某中學(xué)決定在學(xué)生中開(kāi)設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在云南大理坐落著美麗的大理三塔.?dāng)?shù)學(xué)活動(dòng)小組開(kāi)展課外實(shí)踐活動(dòng),在一個(gè)陽(yáng)光明媚的上午,他們?nèi)y(cè)量三塔中一塔的高度,攜帶的測(cè)量工具有:測(cè)角儀.皮尺.小鏡子.

1)小華利用測(cè)角儀和皮尺測(cè)量塔高. 圖1為小華測(cè)量塔高的示意圖.她先在塔前的平地上選擇一點(diǎn),用測(cè)角儀測(cè)出看塔頂的仰角,在點(diǎn)和塔之間選擇一點(diǎn),測(cè)出看塔頂的仰角,然后用皮尺量出兩點(diǎn)的距離為m,自身的高度為m.請(qǐng)你利用上述數(shù)據(jù)幫助小華計(jì)算出塔的高度(,結(jié)果保留整數(shù)).

2)如果你是活動(dòng)小組的一員,正準(zhǔn)備測(cè)量塔高,而此時(shí)塔影的長(zhǎng)為m(如圖2,你能否利用這一數(shù)據(jù)設(shè)計(jì)一個(gè)測(cè)量方案?如果能,

請(qǐng)回答下列問(wèn)題:

在你設(shè)計(jì)的測(cè)量方案中,選用的測(cè)量工具是: ;

要計(jì)算出塔的高,你還需要測(cè)量哪些數(shù)據(jù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別為A(-3,0)、B(1,0),與y軸交于點(diǎn)D(0,3),過(guò)頂點(diǎn)C作CH⊥x軸于點(diǎn)H.

(1)求拋物線的解析式和頂點(diǎn)C的坐標(biāo);

(2)連結(jié)AD、CD,若點(diǎn)E為拋物線上一動(dòng)點(diǎn)(點(diǎn)E與頂點(diǎn)C不重合),當(dāng)△ADE與△ACD面積相等時(shí),求點(diǎn)E的坐標(biāo);

(3)若點(diǎn)P為拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),過(guò)點(diǎn)P向CD所在的直線作垂線,垂足為點(diǎn)Q,以P、C、Q為頂點(diǎn)的三角形與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠EOF=60°,在射線OE上取一點(diǎn)A,使OA=10cm,在射線OF上取一點(diǎn)B,使OB=16cm.以OA、OB為鄰邊作平行四邊形OACB.若點(diǎn)P在射線OF上,點(diǎn)Q在線段CA上,且CQOP=12.設(shè)CQ=aa0).

1)連接PQ,當(dāng)a=2時(shí),求線段PQ的長(zhǎng)度.

2)若以點(diǎn)P、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求a的值.

3)連接PQ,以PQ所在的直線為對(duì)稱(chēng)軸,作點(diǎn)C關(guān)于直線PQ的對(duì)稱(chēng)點(diǎn)C',當(dāng)點(diǎn)C′恰好落在平行四邊形OACB的邊上或者邊所在的直線上時(shí),直接寫(xiě)出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DE、F分別是等邊△ABC的邊AB、BC、AC上的點(diǎn),且DE⊥BC、EF⊥AC、FD⊥AB,則下列結(jié)論不成立的是( 。

A.△DEF是等邊三角形

B.△ADF≌△BED≌△CFE

C.DE=AB

D.SABC=3SDEF

查看答案和解析>>

同步練習(xí)冊(cè)答案