【題目】在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,對角線AC與BD相交于點(diǎn)O,線段OA,OB的中點(diǎn)分別為E,F(xiàn).

(1)求證:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直線EF與線段AD,BC分別相交于點(diǎn)G,H,求 的值.

【答案】
(1)

證明:∵EF是△OAB的中位線,

∴EF∥AB,EF= AB,

而CD∥AB,CD= AB,

∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,

∴△FOE≌△DOC


(2)

解:∵EF∥AB,

∴∠OEF=∠CAB,

∵在Rt△ABC中,AC= = = BC,

∴sin∠OEF=sin∠CAB= = =


(3)

解:∵AE=OE=OC,EF∥CD,

∴△AEG∽△ACD,

= ,即EG= CD,

同理FH= CD,

= =


【解析】(1)由EF是△OAB的中位線,利用中位線定理,得EF∥AB,EF= AB,又CD∥AB,CD= AB,可得EF=CD,由平行線的性質(zhì)可證△FOE≌△DOC;(2)由平行線的性質(zhì)可知∠OEF=∠CAB,利用sin∠OEF=sin∠CAB= ,由勾股定理得出AC與BC的關(guān)系,再求正弦值;(3)由(1)可知AE=OE=OC,EF∥CD,則△AEG∽△ACD,利用相似比可得EG= CD,同理得FH= CD,又AB=2CD,代入 中求值.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和三角形中位線定理的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: ﹣3tan30°+(π﹣4)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8cm,E、FG分別是AB、CDDA上的動點(diǎn),且AE=BF=CG=DH.
(1)求證:四邊形EFGH是正方形;
(2)判斷直線EG是否經(jīng)過某一定點(diǎn),說明理由;
(3)求四邊形EFGH面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】班主任張老師為了了解學(xué)生課堂發(fā)言情況,對前一天本班男、女生發(fā)言次數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成如下頻數(shù)分布折線圖(圖1).

(1)請根據(jù)圖1,回答下列問題:
①這個(gè)班共有名學(xué)生,發(fā)言次數(shù)是5次的男生有人、女生有人;
②男、女生發(fā)言次數(shù)的中位數(shù)分別是次和次;
(2)通過張老師的鼓勵,第二天的發(fā)言次數(shù)比前一天明顯增加,全班發(fā)言次數(shù)變化的人數(shù)的扇形統(tǒng)計(jì)圖如圖2所示,求第二天發(fā)言次數(shù)增加3次的學(xué)生人數(shù)和全班增加的發(fā)言總次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰Rt△ABC中,∠C=90°,AC=1,過點(diǎn)C作直線l∥AB,F(xiàn)是l上的一點(diǎn),且AB=AF,則點(diǎn)F到直線BC的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A、B(m+2,0)與y軸相交于點(diǎn)C,點(diǎn)D在該拋物線上,坐標(biāo)為(m,c),則點(diǎn)A的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)y=x2﹣1的圖象M沿x軸翻折,把所得到的圖象向右平移2個(gè)單位長度后再向上平移8個(gè)單位長度,得到二次函數(shù)圖象N.

(1)求N的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)P(m,n)是以點(diǎn)C(1,4)為圓心、1為半徑的圓上一動點(diǎn),二次函數(shù)的圖象M與x軸相交于兩點(diǎn)A、B,求PA2+PB2的最大值;
(3)若一個(gè)點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱為整點(diǎn).求M與N所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(3)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

同步練習(xí)冊答案