【題目】在菱形ABCD中,∠B=60°,AB=4,動(dòng)點(diǎn)M以每秒1個(gè)單位的速度從點(diǎn)A出發(fā)運(yùn)動(dòng)到點(diǎn)B,點(diǎn)N以相同的速度從點(diǎn)B出發(fā)運(yùn)動(dòng)到點(diǎn)C,兩點(diǎn)同時(shí)出發(fā),過(guò)點(diǎn)M作MP⊥AB交直線CD于點(diǎn)P,連接NM、NP,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),∠NMP=度;
(2)求t為何值時(shí),以A、M、C、P為頂點(diǎn)的四邊形是平行四邊形;
(3)當(dāng)△NPC為直角三角形時(shí),求此時(shí)t的值.
【答案】
(1)30
(2)解:若點(diǎn)P在線段CD上時(shí),過(guò)A作AE⊥CD于E,
在菱形ABCD中,AB∥CD,∠D=60°,AB=AD=CD=BC=4
∴DE= AD=2,AE=2 ,
∴AM=t,PC=2﹣t
要使四邊形AMCP為平行四邊形,則AM=PC
∴t=2﹣t得t=1.
若點(diǎn)P在線段DC延長(zhǎng)線上時(shí),四邊形AMCP不是平行四邊形.
(3)解:若點(diǎn)P在線段CD上時(shí),不存在Rt△NPC,
∴只有當(dāng)P在線段DC延長(zhǎng)線上時(shí),才存在Rt△NPC,
如圖3中,當(dāng)∠NPC=90°時(shí),則M、N、P在同一直線上,
∴∠CNP=∠MNB=30°,
∴BM= BN,即4﹣t= t,
解得,t= .
如圖4中,當(dāng)∠PNC=90°時(shí),
易知BG=2(4﹣t),MG= (4﹣t),
GN=t﹣2(4﹣t)=3t﹣8,GP=NG÷cos30°= (3t﹣8),
∵PM=2 ,
∴MG+GP=2 ,
∴ (4﹣t)+ (3t﹣8)=2 ,
解得t=10,不合題意,
綜上所述,t= s時(shí),△PNC是直角三角形.
【解析】解:(1)如圖1中,連接AC.
∵四邊形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,
∴△ABC,△ACD都是等邊三角形,
∵t=2時(shí),AM=BM=2,BN=CN=2,
∵PM⊥AB,
∴PA=PB,
∴P與C重合,
∵M(jìn)N∥AC,
∴∠NMP=∠ACM= ∠ACB=30°.
(2)若點(diǎn)P在線段CD上時(shí),過(guò)A作AE⊥CD于E,
在菱形ABCD中,AB∥CD,∠D=60°,AB=AD=CD=BC=4
∴DE= AD=2,AE=2 ,
∴AM=t,PC=2﹣t
要使四邊形AMCP為平行四邊形,則AM=PC
∴t=2﹣t得t=1.
若點(diǎn)P在線段DC延長(zhǎng)線上時(shí),四邊形AMCP不是平行四邊形.
(3)若點(diǎn)P在線段CD上時(shí),不存在Rt△NPC,
∴只有當(dāng)P在線段DC延長(zhǎng)線上時(shí),才存在Rt△NPC,
如圖3中,當(dāng)∠NPC=90°時(shí),則M、N、P在同一直線上,
∴∠CNP=∠MNB=30°,
∴BM= BN,即4﹣t= t,
解得,t= .
如圖4中,當(dāng)∠PNC=90°時(shí),
易知BG=2(4﹣t),MG= (4﹣t),
GN=t﹣2(4﹣t)=3t﹣8,GP=NG÷cos30°= (3t﹣8),
∵PM=2 ,
∴MG+GP=2 ,
∴ (4﹣t)+ (3t﹣8)=2 ,
解得t=10,不合題意,
綜上所述,t= s時(shí),△PNC是直角三角形.
所以答案是:(1)30;(2)t=1;(3)t=.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用平行四邊形的性質(zhì),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b經(jīng)過(guò)點(diǎn)A(﹣30,0)和點(diǎn)B(0,15),直線y=x+5與直線y=kx+b相交于點(diǎn)P,與y軸交于點(diǎn)C.
(1)求直線y=kx+b的解析式.
(2)求△PBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗在計(jì)算一個(gè)二項(xiàng)式的平方時(shí),得到正確結(jié)果m2﹣10mn+■,但最后一項(xiàng)不慎被墨水污染,這一項(xiàng)應(yīng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y=x2﹣x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱(chēng)軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲種物品每個(gè)重4 kg,乙種物品每個(gè)重7 kg,現(xiàn)有甲種物品x個(gè),乙種物品y個(gè),共重76 kg.
(1)列出關(guān)于x,y的二元一次方程;
(2)若x=12,則y=_______;
(3)若乙種物品有8個(gè),則甲種物品有_______個(gè);
(4)寫(xiě)出滿足條件的x,y的全部整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在一條筆直的道路上相向而行,甲騎自行車(chē)從A地到B地,乙駕車(chē)從B地到A地,他們分別以不同的速度勻速行駛,已知甲先出發(fā)6分鐘后,乙才出發(fā),在整個(gè)過(guò)程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A時(shí),甲還需 分鐘到達(dá)終點(diǎn)B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過(guò)點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=,cos∠ACH=,點(diǎn)B的坐標(biāo)為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的三角形紙片中,AB=8cm,BC=6cm,AC=7cm,沿過(guò)點(diǎn)B的直線折疊三角形,使點(diǎn)C落在AB邊的點(diǎn)E處,折痕為BD,則△AED的周長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com