【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且SAOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值.

【答案】
(1)

解:把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得

解得

故該拋物線的解析式為:y=﹣x2﹣2x+3.


(2)

解:由(1)知,該拋物線的解析式為y=﹣x2﹣2x+3,則易得B(1,0).

∵SAOP=4SBOC,

×3×|﹣x2﹣2x+3|=4× ×1×3.

整理,得(x+1)2=0或x2+2x﹣7=0,

解得x=﹣1或x=﹣1±2

則符合條件的點(diǎn)P的坐標(biāo)為:(﹣1,4)或(﹣1+2 ,﹣4)或(﹣1﹣2 ,﹣4);


(3)

解:設(shè)直線AC的解析式為y=kx+t,將A(﹣3,0),C(0,3)代入,

,

解得

即直線AC的解析式為y=x+3.

設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),(﹣3≤x≤0),則D點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),

QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+ 2+

∴當(dāng)x=﹣ 時(shí),QD有最大值


【解析】(1)把點(diǎn)A、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)的方程組,通過(guò)解方程組求得系數(shù)的值;(2)設(shè)P點(diǎn)坐標(biāo)為(x,﹣x2﹣2x+3),根據(jù)SAOP=4SBOC列出關(guān)于x的方程,解方程求出x的值,進(jìn)而得到點(diǎn)P的坐標(biāo);(3)先運(yùn)用待定系數(shù)法求出直線AC的解析式為y=x+3,再設(shè)Q點(diǎn)坐標(biāo)為(x,x+3),則D點(diǎn)坐標(biāo)為(x,x2+2x﹣3),然后用含x的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質(zhì)即可求出線段QD長(zhǎng)度的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過(guò)B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,過(guò)點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k的值為( )

A.6
B.9
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4m時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2m,當(dāng)水面下降1m時(shí),水面的寬度為( )

A.3
B.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)C點(diǎn)作CA∥BD交OD的延長(zhǎng)線于點(diǎn)A,連接BC,∠B=∠A=30°,BD=2

(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中C=900,B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DEAC的位置關(guān)系是 ;

設(shè)BDC的面積為S1,AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

當(dāng)DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC,CE邊上的高,請(qǐng)你證明小明的猜想。

3)拓展探究

已知ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OEABBC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使SDCF =SBDC,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD垂直于經(jīng)過(guò)點(diǎn)C的直線DE,垂足為點(diǎn)D,AC平分∠DAB.

(1)求證:直線DE是⊙O的切線;
(2)連接BC,猜想:∠ECB與∠CAB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案