解方程:.
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(廣東卷)數(shù)學(解析版) 題型:解答題
如圖,⊙是△ABC的外接圓,AC是直徑,過點O作OD⊥AB于點D,延長DO交⊙于點P,過點P作PE⊥AC于點E,作射線DE交BC的延長線于F點,連接PF。
(1)若∠POC=60°,AC=12,求劣弧PC的長;(結果保留π)
(2)求證:OD=OE;
(3)求證:PF是⊙的切線。
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江嘉興卷)數(shù)學(解析版) 題型:選擇題
一名射擊愛好者5次射擊的中靶環(huán)數(shù)如下:6,7,9,8,9.這5個數(shù)據(jù)的中位數(shù)是( )
A.6 B.7 C.8 D.9
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江嘉興卷)數(shù)學(解析版) 題型:解答題
類比梯形的定義,我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對角四邊形”性質時:
①小紅畫了一個“等對角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時她發(fā)現(xiàn)CB=CD成立.請你證明此結論;
②由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(浙江紹興卷)數(shù)學(解析版) 題型:解答題
如圖,在平面直角坐標系中,直線l平行x軸,交y軸于點A,第一象限內的點B在l上,連結OB,動點P滿足∠APQ=90°,PQ交x軸于點C.
(1)當動點P與點B重合時,若點B的坐標是(2,1),求PA的長.
(2)當動點P在線段OB的延長線上時,若點A的縱坐標與點B的橫坐標相等,求PA:PC的值.
(3)當動點P在直線OB上時,點D是直線OB與直線CA的交點,點E是直線CP與y軸的交點,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
查看答案和解析>>
科目:初中數(shù)學 來源:2014年初中畢業(yè)升學考試(海南卷)數(shù)學(解析版) 題型:選擇題
將拋物線y=x2平移得到拋物線y=(x+2)2,則這個平移過程正確的是( )
A.向左平移2個單位 B.向右平移2個單位
C.向上平移2個單位 D.向下平移2個單位
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com