【題目】如圖,AB是⊙O的弦,點C是在過點B的切線上,且OC⊥OA,OC交AB于點P.
(1)判斷△CBP的形狀,并說明理由;
(2)若⊙O的半徑為6,AP=,求BC的長.
【答案】(1)△CBP是等腰三角形,理由見解析;(2)8.
【解析】【試題分析】(1)等腰三角形,理由:OC⊥OA,根據(jù)垂直的定義得AOC=90°,根據(jù)三角形內(nèi)角和定理∠A+∠APO=90°,因為BC切⊙O于點B,根據(jù)切線的性質(zhì),∠OBC=90°,即∠OBA+∠CBP=90°,因為OA=OB,根據(jù)等邊對等角,得∠A=∠OBA,等量代換得,∠APO=∠CBP
對等角相等得,∠APO=∠CPB,∠CPB=∠CBP,根據(jù)等角對等邊得,CP=CB,即△CBP是等腰三角形;
(2)OC⊥OA,根據(jù)勾股定理得,OP=
設(shè)BC=x,則OC=x+2,利用勾股定理得:即,解得x=8,即BC=8.
【試題解析】
等腰三角形,理由:
∵OC⊥OA,
∴∠AOC=90°,
∴∠A+∠APO=90°
∵BC切⊙O于點B,
∴∠OBC=90°,
∴∠OBA+∠CBP=90°
∵OA=OB,
∴∠A=∠OBA,
∴∠APO=∠CBP
∵∠APO=∠CPB,
∴∠CPB=∠CBP,
∴CP=CB
△CBP是等腰三角形;
(2)∵OC⊥OA,
∴OP=
設(shè)BC=x,
∴OC=x+2,
∵
∴,∴x=8,∴BC=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(1)P是等腰三角形A BC底邊BC上的一人動點,過點P作BC的垂線,交AB于點Q,交CA的延長線于點R。請觀察AR與AQ,它們有何關(guān)系?并證明你的猜想。
(2)如果點P沿著底邊BC所在的直線,按由C向B的方向運動到CB的延長線上時,(1)中所得的結(jié)論還成立嗎?請你在圖15(2)中完成圖 形,并給予證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)、∠1+∠2=90°;(2)、BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC=4cm,若O是BC的中點,動點M在AB移動,動點N在AC上移動,且AN=BM .
(1)證明:OM = ON;
(2)四邊形AMON面積是否發(fā)生變化,若發(fā)生變化說明理由;若不變,請你求出四邊形AMON的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將紙片△ABC沿DE折疊使點A落在A′處的位置.
(1)如果A′落在四邊形BCDE的內(nèi)部(如圖1),∠A′與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?并說明理由.
(2)如果A′落在四邊形BCDE的BE邊上,這時圖1中的∠1變?yōu)?°角,(如圖3)則∠A′與∠2之間的關(guān)系是 .
(3)如果A′落在四邊形BCDE的外部(如圖2),這時∠A′與∠1、∠2之間又存在怎樣的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于底面上一點).已知E、F在AB邊上,是被剪去一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=xcm.
(1)若折成的包裝盒恰好是正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當(dāng)∠BAP=60°,∠DCP=20°時,則∠APC= .
(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數(shù)量關(guān)系為 .
(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖ΔABC中,∠B =∠C,BD=CF,BE=CD,∠EDF=α,則下列結(jié)論正確的是( )
A. 2α+∠A=90° B. 2α+∠A=180°
C. α+∠A=90° D. α+∠A=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+5的圖象過A(﹣1,0),B(5,0)兩點,與y軸交于點C,作直線BC,動點P從點C出發(fā),以每秒個單位長度的速度沿CB向點B運動,運動時間為t秒,當(dāng)點P與點B重合時停止運動.
(1)求拋物線的表達(dá)式;
(2)如圖2,當(dāng)t=1時,若點Q是X軸上的一個動點,如果以Q,P,B為頂點的三角形與△ABC相似,求出Q點的坐標(biāo);
(3)如圖3,過點P向x軸作垂線分別交x軸,拋物線于E、F兩點.
①求PF的長度關(guān)于t的函數(shù)表達(dá)式,并求出PF的長度的最大值;
②連接BF,將△PBF沿BF折疊得到△P′BF,當(dāng)t為何值時,四邊形PFP′B是菱形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com