某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60 cm×30 cm,B型板材規(guī)格是40 cm×30 cm.現(xiàn)只能購得規(guī)格是150 cm×30 cm的標準板材.一張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(下圖是裁法一的裁剪示意圖)

設所購的標準板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.

(1)上表中,m________n________;

(2)分別求出yxzx的函數(shù)關系式;

(3)若用Q表示所購標準板材的張數(shù),求Qx的函數(shù)關系式,并指出當x取何值時Q最小,此時按三種裁法各裁標準板材多少張?

答案:
解析:

  

  解 得x≤90.

  注:事實上,0≤x≤90且x是6的整數(shù)倍由一次函數(shù)的性質可知,當x=90時,Q最。藭r按三種裁法分別裁90張、75張、0張.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標準板材.一張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
  裁法一 裁法二 裁法三
A型板材塊數(shù) 1 2 0
B型板材塊數(shù) 2 m n
設所購的標準板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.
(1)上表中,m=
 
,n=
 
;
(2)分別求出y與x和z與x的函數(shù)關系式;
(3)若用Q表示所購標準板材的張數(shù),求Q與x的函數(shù)關系式,并指出當x取何值時Q最小,此時按三種裁法各裁標準板材多少張?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某公司裝修需用A型板材48塊、B型板材36塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標準板材.于是需將每張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
裁法一 裁法二 裁法三
A型板材塊數(shù) 1 2 0
B型板材塊數(shù) 2 m n
(1)填空:上表中,m=
0
0
,n=
3
3
;
(2)如果所購的標準板材為35張,按裁法一、裁法二和裁法三全部裁完,且所裁出的A、B兩種型號的板材塊數(shù)與所需塊數(shù)相符.問按三種裁法各裁標準板材多少張?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年新疆阿拉爾市鵬源教育中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標準板材.一張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
 裁法一裁法二裁法三
A型板材塊數(shù)12
B型板材塊數(shù)2mn
設所購的標準板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.
(1)上表中,m=______,n=______;
(2)分別求出y與x和z與x的函數(shù)關系式;
(3)若用Q表示所購標準板材的張數(shù),求Q與x的函數(shù)關系式,并指出當x取何值時Q最小,此時按三種裁法各裁標準板材多少張?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省溫州市樂清市公立學校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•河北)某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標準板材.一張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
 裁法一裁法二裁法三
A型板材塊數(shù)12
B型板材塊數(shù)2mn
設所購的標準板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.
(1)上表中,m=______,n=______;
(2)分別求出y與x和z與x的函數(shù)關系式;
(3)若用Q表示所購標準板材的張數(shù),求Q與x的函數(shù)關系式,并指出當x取何值時Q最小,此時按三種裁法各裁標準板材多少張?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷47(河莊鎮(zhèn)中 陳國亞)(解析版) 題型:解答題

(2009•河北)某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標準板材.一張標準板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
 裁法一裁法二裁法三
A型板材塊數(shù)12
B型板材塊數(shù)2mn
設所購的標準板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.
(1)上表中,m=______,n=______;
(2)分別求出y與x和z與x的函數(shù)關系式;
(3)若用Q表示所購標準板材的張數(shù),求Q與x的函數(shù)關系式,并指出當x取何值時Q最小,此時按三種裁法各裁標準板材多少張?

查看答案和解析>>

同步練習冊答案