【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。

A. ABBC時四邊形ABCD是菱形

B. ACBD時四邊形ABCD是菱形

C. 當∠ABC90°時,四邊形ABCD是矩形

D. ACBD且∠ABC90°時四邊形ABCD是正方形

【答案】D

【解析】

根據(jù)平行四邊形性質(zhì)和矩形,菱形,正方形判定進行判定.

A、根據(jù)鄰邊相等的平行四邊形是菱形可知:四邊形ABCD是平行四邊形,當AB=BC時,它是菱形,故A選項正確;

B、∵四邊形ABCD是平行四邊形,∴BO=OD,∵ACBD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四邊形ABCD是菱形,故B選項正確;

C、有一個角是直角的平行四邊形是矩形,故C選項正確;

D、根據(jù)對角線相等的平行四邊形是矩形可知當AC=BD時,它是矩形,不是正方形,故D選項錯誤;

綜上所述,符合題意是D選項;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c過點A(0,﹣6)、B(﹣2,0),與x軸的另一交點為點C.

(1)求此拋物線的解析式;

(2)將直線AC向下平移m個單位,使平移后的直線與拋物線有且只有一個公共點M,求m的值及點M的坐標;

(3)拋物線上是否存在點P,使△PAC為直角三角形?若存在,請直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

1)圖②中的陰影部分的面積為   

2)觀察圖②,三個代數(shù)式(m+n2,(mn2,mn之間的等量關系是   

3)若x+y=﹣6,xy,則xy   

4)觀察圖③,你能得到怎樣的代數(shù)恒等式呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片ABCD的邊長為,對角線相交于點O,第1次將紙片折疊,使點A與點O重合,折痕與AO交于點P1;設P1O的中點為O1,第2次將紙片折疊,使點A與點O1重合,折痕與AO交于點P2;設P2O1的中點為O2,第3次將紙片折疊,使點A與點O2重合,折痕與AO交于點P3;…;設Pn-1On-2的中點為On-1,第n次將紙片折疊,使點A與點On-1重合,折痕與AO交于點Pn(n>2),則APn的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測出某塔的高度,在塔前的平地上選擇一點,用測角儀測得塔頂的仰角為,在、之間選擇一點(、三點在同一直線上)用測角儀測得塔頂的仰角為,且間的距離為40m.

(1)求點的距離;

(2)求塔高(結(jié)果精確到0.1m.)(己知).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王華、張偉兩位同學分別將自己10次數(shù)學自我檢測的成績繪制成如下統(tǒng)計圖:

1)根據(jù)上圖中提供的數(shù)據(jù)列出如下統(tǒng)計表:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

王華

80

b

80

d

張偉

a

85

c

260

a= ,b= ,c= d= ,

2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是 .

3)現(xiàn)在要從這兩個同學選一位去參加數(shù)學競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某銷售商準備在南充采購一批絲綢,經(jīng)調(diào)查,用10000元采購A型絲綢的件數(shù)與用8000元采購B型絲綢的件數(shù)相等,一件A型絲綢進價比一件B型絲綢進價多100元.

(1)求一件A型、B型絲綢的進價分別為多少元?

(2)若銷售商購進A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設購進A型絲綢m件.

①求m的取值范圍.

②已知A型的售價是800元/件,銷售成本為2n元/件;B型的售價為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤w(元)與n(元)的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科學技術的發(fā)展,信息化、網(wǎng)絡化時代的到來,很多農(nóng)產(chǎn)品改變了原來的銷售模式,實行了網(wǎng)上銷售,剛大學畢業(yè)的小韋把自己家的紅薯產(chǎn)品也放到網(wǎng)上,他原來計劃每天賣出150千克,由于各種原因,實際每天的銷售量與計劃量相比有出入,下表是國慶小長假期間的銷售情況(超出部分記為正,不足記為負,單位:千克)

時間

1

2

3

4

5

6

7

與計劃量的差值

1)根據(jù)上表前四天一共賣出了多少千克?

2)銷售量最多的一天與最少的一天分別是多少千克?

3)若每千克按2. 6元出售,并需付運費平均每千克0. 3元,則小韋國慶小長假期間一共收入多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關系?并說明理由.

查看答案和解析>>

同步練習冊答案