精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( )

A.a>0
B.c>0
C.
D.b2+4ac>0

【答案】C
【解析】 解:A、正確,∵拋物線開口向上,∴a>0;
B、正確,∵拋物線與y軸的交點在y軸的正半軸,∴c>0;
C、錯誤,∵拋物線的對稱軸在x的正半軸上,∴
D、正確,∵拋物線與x軸有兩個交點,∴△=b2﹣4ac>0;
故選C.
【考點精析】認真審題,首先需要了解二次函數的圖象(二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點),還要掌握二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,⊙O是以原點為圓心,2為半徑的圓,點P是直線y=﹣x+4上的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數.

2)若∠A=m∠B=n,求∠DCE.(用m、n表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,直線l經過A(4,0)和B(0,4)兩點,拋物線y=a(x﹣h)2的頂點為P(1,0),直線l與拋物線的交點為M.

(1)求直線l的函數解析式;
(2)若SAMP=3,求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知AEABAFAC,AE=ABAF=AC.試判斷線段EC與BF的關系并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一次高爾夫球比賽中,小明從山坡下O點打出一球向球洞A點飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當球達到最大高度10m時,球移動的水平距離為8m.已知山坡OA與水平方向OC的夾角為30°,OC=12m.

(1)求點A的坐標;
(2)求球的飛行路線所在拋物線的解析式;
(3)判斷小明這一桿能否把高爾夫球從O點直接打入球洞A點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖1,AB⊥BDB,ED⊥BDD,點C在直線BD上且與F重合,AC=EF,BC=DE .

(1)請說明△ABC≌△FDE,并判斷AC是否垂直FE?

(2)若將△ABC 沿BD方向平移至如圖2的位置時,且其余條件不變,則AC是否垂直FE?請說明為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D為BC上一點,以AD為腰作等腰△ADE,AD=AE,∠BAC=∠DAE,連接CE.

(1)求證:BD=CE;
(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面積為1,求線段BD的長.

查看答案和解析>>

同步練習冊答案