如圖,在矩形ABCD中,AB=24厘米,BC=10厘米,點(diǎn)P從A開(kāi)始沿AB邊以4厘米/秒的速度運(yùn)動(dòng),點(diǎn)Q從C開(kāi)始沿CD邊2厘米/秒的速度移動(dòng),如果點(diǎn)P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2秒時(shí),求P、Q兩點(diǎn)之間的距離;
(2)t為何值時(shí),線段AQ與DP互相平分?
(3)t為何值時(shí),四邊形APQD的面積為矩形面積的數(shù)學(xué)公式?

解:(1)如圖所示:連接PQ,過(guò)點(diǎn)P作PE⊥DQ于點(diǎn)E,
∵AB=24厘米,BC=10厘米,點(diǎn)P從A開(kāi)始沿AB邊以4厘米/秒的速度運(yùn)動(dòng),點(diǎn)Q從C開(kāi)始沿CD邊2厘米/秒的速度移動(dòng),
∴當(dāng)t=2秒時(shí),QC=4cm,AP=8cm,
∴DQ=24-QC=20,則EQ=12,
∴PQ===2(cm),

(2)∵AP=4t,DQ=24-2t,
當(dāng)線段AQ與DP互相平分,則四邊形APQD為矩形時(shí),
則AP=DQ,即4t=24-2t,
解得:t=4.
故t為4秒時(shí),線段AQ與DP互相平分;

(3)∵P在AB上,
∴S=(DQ+AP)AD,
=(4t+24-2t)×10,
=10t+120(0<t≤6),
S矩形ABCD=10×24=240,
∴10t+120=×240,
解得:t=3.
∴t為3秒時(shí),四邊形APQD的面積為矩形面積的
分析:(1)當(dāng)t=2秒時(shí),表示出QC,AP的長(zhǎng),利用勾股定理求出PQ的長(zhǎng)即可;
(2)根據(jù)線段AQ與DP互相平分,則四邊形APQDA為矩形,也就是AP=DQ,分別用含t的代數(shù)式表示,解出即可;
(3)用t表示出四邊形APQD的面積,再求出矩形面積的進(jìn)而得出即可.
點(diǎn)評(píng):本題考查了矩形的性質(zhì)及勾股定理等知識(shí),根據(jù)運(yùn)動(dòng)速度得出QC以及AP的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過(guò)的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案