【題目】將三角形紙片ABC按如圖所示的方式折疊,使點(diǎn)B落在邊AC上,記為點(diǎn)B,折痕為EF.已知ABAC8,BC10,若以點(diǎn)B,F,C為頂點(diǎn)的三角形與ABC相似,那么BF的長度是______________.

【答案】5(答對(duì)一個(gè)得1分)

【解析】

根據(jù)△B′FC△ABC相似時(shí)的對(duì)應(yīng)情況,有兩種情況:

① B′FC∽△ABC時(shí),B′F AB ="CF/BC" ,

又因?yàn)?/span>AB=AC=8,BC=10,B'F=BF,

所以

解得BF=;

②△B′CF∽△BCA時(shí),B′F/BA ="CF/CA" ,

又因?yàn)?/span>AB=AC=8,BC=10,B'F=CFBF=B′F,

BF+FC=10,即2BF=10

解得BF=5

BF的長度是5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,連接

1)求直線和反比例函數(shù)的解析式;

2)直線經(jīng)過點(diǎn)嗎?請(qǐng)說明理由;

3)當(dāng)直線與反比例數(shù)圖象的交點(diǎn)在兩點(diǎn)之間.且將分成的兩個(gè)三角形面積之比為時(shí),請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線l1yx2+bx+c與它的對(duì)稱軸x=﹣2交于點(diǎn)A,且經(jīng)過點(diǎn)B0,﹣2).

1)求拋物線l1的解析式;

2)如圖1,直線ykx+2k8k0)與拋物線l1交于點(diǎn)E,F,若△AEF的面積為,求k的值;

3)如圖2,將拋物線l1向下平移nn0)個(gè)單位長度得到拋物線l2,拋物線l2y軸交于點(diǎn)C,過點(diǎn)Cx軸的平行線交拋物線l2于另一點(diǎn)D;拋物線l2的對(duì)稱軸與x軸的交于點(diǎn)M,P為線段OC上一點(diǎn),若△POM與△PCD相似,并且符合該條件的點(diǎn)P有且只有2個(gè),求n的值及相應(yīng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,延長BC到點(diǎn)D,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于E,F兩點(diǎn),連接AEAF,在下列結(jié)論中:①OEOF;②CECF;③若CE12,CF5,則OC的長為6;④當(dāng)AOCO時(shí),四邊形AECF是矩形,其中正確的有( 。

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達(dá)式(利潤=收入-成本);

(3)試說明(2)中總利潤W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時(shí),點(diǎn)B,M間的距離可能是( 。

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.——蘇科版《數(shù)學(xué)》九年級(jí)(下冊(cè))P21參考上述教材中的話,判斷方程x2﹣2x=﹣2實(shí)數(shù)根的情況是 ( )

A. 有三個(gè)實(shí)數(shù)根 B. 有兩個(gè)實(shí)數(shù)根 C. 有一個(gè)實(shí)數(shù)根 D. 無實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于、兩點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.

1)根據(jù)圖象,直接寫出滿足的取值范圍;

2)求這兩個(gè)函數(shù)的表達(dá)式;

3)點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了矩形后,數(shù)學(xué)活動(dòng)小組開展了探究活動(dòng).如圖1,在矩形中,,,點(diǎn)上,先以為折痕將點(diǎn)往右折,如圖2所示,再過點(diǎn),垂足為,如圖3所示.

1)在圖3中,若,則的度數(shù)為______,的長度為______.

2)在(1)的條件下,求的長.

3)在圖3中,若,則______.

查看答案和解析>>

同步練習(xí)冊(cè)答案