【題目】如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點(diǎn),MP⊥AB交邊CD于點(diǎn)P,連接NM,NP.

(1)若∠B=60°,這時(shí)點(diǎn)P與點(diǎn)C重合,則∠NMP=度;
(2)求證:NM=NP;
(3)當(dāng)△NPC為等腰三角形時(shí),求∠B的度數(shù).

【答案】
(1)30
(2)

證明:

如圖1,延長(zhǎng)MN交DC的延長(zhǎng)線于點(diǎn)E,

∵四邊形ABCD是菱形,∴AB∥DC,

∴∠BMN=∠E,

∵點(diǎn)N是線段BC的中點(diǎn),∴BN=CN,

在△MNB和△ENC中,

,

∴△MNB≌△ENC,

∴MN=EN,

即點(diǎn)N是線段ME的中點(diǎn),

∵M(jìn)P⊥AB交邊CD于點(diǎn)P,

∴MP⊥DE,

∴∠MPE=90°,

∴PN=MN= ME


(3)

如圖2

∵四邊形ABCD是菱形,

∴AB=BC,

又∵M(jìn),N分別是邊AB,BC的中點(diǎn),

∴MB=NB,

∴∠BMN=∠BNM,

由(2)知:△MNB≌△ENC,

∴∠BMN=∠BNM=∠E=∠CNE,

又∵PN=MN=NE,

∴∠NPE=∠E,

設(shè)∠BMN=∠BNM=∠E=∠CNE=∠NPE=x°,

則∠NCP=2x°,∠NPC=x°,

①若PN=PC,則∠PNC=∠NCP=2x°,

在△PNC中,2x+2x+x=180,

解得:x=36,

∴∠B=∠PNC+∠NPC=2x°+x°=36°×3=108°,

②若PC=NC,則∠PNC=∠NPC=x°,

在△PNC中,2x+x+x=180,

解得:x=45,

∴∠B=∠PNC+∠NPC=x°+x°=45°+45°=90°.

③NP=NC時(shí),不可能.

故∠B為108°或90°.


【解析】解:(1)∵M(jìn)P⊥AB交邊CD于點(diǎn)P,∠B=60°,點(diǎn)P與點(diǎn)C重合,
∴∠NPM=30°,∠BMP=90°,
∵N是BC的中點(diǎn),∴MN=PN,
∴∠NMP=∠NPM=30°;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識(shí),掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種子培育基地用A,B,C,D四種型號(hào)的小麥種子共2 000粒進(jìn)行發(fā)芽實(shí)驗(yàn),從中選出發(fā)芽率高的種子進(jìn)行推廣.通過(guò)實(shí)驗(yàn)得知,C型號(hào)種子的發(fā)芽率為95﹪,根據(jù)實(shí)驗(yàn)數(shù)據(jù)繪制了圖-1和圖-2兩幅尚不完整的統(tǒng)計(jì)圖.

(1)D型號(hào)種子的粒數(shù)是______;

(2)請(qǐng)你將圖-2的統(tǒng)計(jì)圖補(bǔ)充完整;

(3)通過(guò)計(jì)算說(shuō)明,應(yīng)選哪一個(gè)型號(hào)的種子進(jìn)行推廣;

(4)若將所有已發(fā)芽的種子放到一起,從中隨機(jī)取出一粒,求取到B型號(hào)發(fā)芽種子的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若平行四邊形中有兩個(gè)內(nèi)角的度數(shù)比為1∶3,則其中較小的內(nèi)角是( )

A. 30° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程3x226x化成一般形式后,二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別是(

A. 3、-6B. 3、6C. 32D. 2、-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1C2上的任一點(diǎn). 當(dāng)a x b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個(gè)函數(shù)在a x b上是“相鄰函數(shù)”,否則稱它們?cè)?/span>a x b上是“非相鄰函數(shù)”.

例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過(guò)構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.

(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說(shuō)明理由;

(2)若函數(shù)y = x2 - xy = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;

(3)若函數(shù)y =y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD,AB,BCCD的長(zhǎng)度分別為2x1,3x,x4,ABCD的周長(zhǎng)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB∥DE,∠ABC=70,∠CDE=140,則∠BCD的值為( )

A.70
B.50
C.40
D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將三角形ABC沿DE折疊,使點(diǎn)A落在BC上的點(diǎn)F處,且DE∥BC,若∠B=70,則∠BDF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.

(1)說(shuō)明:DC∥AB;
(2)求∠PFH的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案