【題目】如圖,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,點O是AB的中點,∠DOE=∠A,當∠DOE以點O為旋轉(zhuǎn)中心旋轉(zhuǎn)時,OD交AC的延長線于點D,交邊CB于點M,OE交線段BM于點N.
(1)當CM=2時,求線段CD的長;
(2)設(shè)CM=x,BN=y,試求y與x之間的函數(shù)解析式,并寫出定義域;
(3)如果△OMN是以O(shè)M為腰的等腰三角形,請直接寫出線段CM的長.
【答案】
(1)
解:如圖1中,作OH⊥BC于H.
在Rt△ABC中,∵AB=10,sinB= ,
∴AC=6,BC=8,
∵AO=OB,OH∥AC,
∴CH=HB=4,OH=3,
∵CM=2,
∴CM=HM=2,
在△DCM和△OHM中,
,
∴△DCM≌△OHM,
∴CD=OH=3.
(2)
解:解:如圖2中,作NG⊥OB于G.
∵∠HOB=∠A=∠MON,
∴∠1=∠2,
在Rt△BNG中,BN=y,sibB= ,
∴GN= y,BG= y,
∵tan∠1=tan∠2,
∴ = ,
∴ = ,
∴y= ,(0<x<4)
(3)
①如圖3中,當OM=ON時,OH垂直平分MN,
∴BN=CM=x,
∵△OMH≌△ONG,
∴NG=HM=4﹣x,
∵sinB= ,
∴ = ,
∴CM=x= .
②如圖4中,當OM=MN時.連接CO,
∵OA=OB,OM=MN,
∴CO=OA=OB,
∴∠MON=∠MNO=∠A=∠OCA,
∴△MON∽△OAC,
∴∠AOC=∠OMN,
∴∠BOC=∠CMO,∵∠B=∠B,
∴△CMO∽△COB,
∴ = ,
∴8x=52,
∴x= .
綜上所述,△OMN是以O(shè)M為腰的等腰三角形時,線段CM的長為 或
【解析】(1)如圖1中,作OH⊥BC于H.只要證明△DCM≌△OHM,即可得出CD=OH=3.(2)如圖2中,作NG⊥OB于G.首先證明∠1=∠2,根據(jù)tan∠1=tan∠2,可得 = ,由此即可解決問題.(3)分兩種情形討論即可①如圖3中,當OM=ON時,OH垂直平分MN,②如圖4中,當OM=MN時,分別求解即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+x+c的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標為(8,0),連接AB、AC.
(1)請直接寫出二次函數(shù)y=ax2+x+c的表達式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點N在x軸上運動,當以點A、N、C為頂點的三角形是等腰三角形時,請直接寫出此時點N的坐標;
(4)若點N在線段BC上運動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當△AMN面積最大時,求此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的方程為 .以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρ2﹣8ρsinθ+15=0. (Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標方程;
(Ⅱ)設(shè)點P在C1上,點Q在C2上,求|PQ|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,cot∠ADB= ,AB=16.點E在射線BC上,點F在線段BD上,且∠DEF=∠ADB.
(1)求線段BD的長;
(2)設(shè)BE=x,△DEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出函數(shù)定義域;
(3)當△DEF為等腰三角形時,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GEGD.
(1)求證:∠ACF=∠ABD;
(2)連接EF,求證:EFCG=EGCB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結(jié)DE交邊AB于點F,聯(lián)結(jié)AC交DE于點G,且 = .
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: = .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,M為CD中點,分別以B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點P,若∠PBC=70°,則∠MPC的度數(shù)為( )
A.55°
B.40°
C.35°
D.20°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= (a為常數(shù))的圖象經(jīng)過點B(﹣4,2).
(1)求a的值;
(2)如圖,過點B作直線AB與函數(shù)y= 的圖象交于點A,與x軸交于點C,且AB=3BC,過點A作直線AF⊥AB,交x軸于點F,求線段AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com