已知拋物線y=x2-3x-的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C.

(1)求點A、B、C、D的坐標;

(2)在y軸的正半軸上是否存在點P,使以P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標;若不存在,請說明理由;

(3)取點E(,0)和點F(0,),直線L經(jīng)過E、F兩點,點G是線段BD的中點.

①點G是否在直線L上,請說明理由;

②在拋物線上是否存在點M,使點M關于直線L的對稱點在x軸上?若存在,求出點M的坐標;若不存在,請說明理由.

答案:

9.png

9.png

10.png


 

 

 

 



      考點:

    [二次函數(shù)綜合題]

    分析:

    (1)令y=0,解關于x的一元二次方程求出A、B的坐標,令x=0求出點C的坐標,再根據(jù)頂點坐標公式計算即可求出頂點D的坐標;

    (2)根據(jù)點A、C的坐標求出OA、OC的長,再分OA和OA是對應邊,OA和OC是對應邊兩種情況,利用相似三角形對應邊成比例列式求出OP的長,從而得解;

    (3)①設直線l的解析式為y=kx+b(k≠0),利用待定系數(shù)法求一次函數(shù)解析式求出直線l的解析式,再利用中點公式求出點G的坐標,然后根據(jù)直線上點的坐標特征驗證即可;

             ②設拋物線的對稱軸與x軸交點為H,求出OE、OF、HD、HB的長,然后求出△OEF和△HDB相似,根據(jù)相似三角形對應角相等求出∠OFE=∠HBD,然后求出EG⊥BD,從而得到直線l是線段BD的垂直平分線,根據(jù)線段垂直平分線的性質點D關于直線l的對稱點就是B,從而判斷出點M就是直線DE與拋物線的交點,再設直線DE的解析式為y=mx+n,利用待定系數(shù)法求一次函數(shù)解析求出直線DE的解析式,然后與拋物線解析式聯(lián)立求解即可得到符合條件的點M.



練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線yx2-3x-4,則它與x軸的交點坐標是                 .

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線yx2-3x-4,則它與x軸的交點坐標是                  .

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年遼寧省營口市中考模擬(一)數(shù)學試卷(帶解析) 題型:解答題

如圖,已知拋物線y=x2+bx+c與坐標軸交于A、B、C三點, A點的坐標為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.

(1)填空:點C的坐標是     ,b=   ,c=    ;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年遼寧省營口市中考模擬(一)數(shù)學試卷(解析版) 題型:解答題

如圖,已知拋物線y=x2+bx+c與坐標軸交于A、B、C三點, A點的坐標為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.

(1)填空:點C的坐標是     ,b=   ,c=    ;

(2)求線段QH的長(用含t的式子表示);

(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆江蘇省太倉市九年級上學期期中考試數(shù)學卷 題型:填空題

已知拋物線yx2x-1與x軸的一個交點為(m,0),則代數(shù)式m2-m+2011的值是    ▲   

 

查看答案和解析>>

同步練習冊答案