【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過(guò)點(diǎn)EEF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長(zhǎng)度;

(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫(xiě)出∠EFC的度數(shù).

【答案】(1)證明見(jiàn)解析;(2)CG= ;(3)∠EFC=120°或30°.

【解析】分析: (1)作EP⊥CDP,EQ⊥BCQ,證明Rt△EQF≌Rt△EPD,得到EF=ED,根據(jù)正方形的判定定理證明即可;

(2)通過(guò)計(jì)算發(fā)現(xiàn)EAC中點(diǎn),點(diǎn)FC重合,△CDG是等腰直角三角形,由此即可解決問(wèn)題.

(3)分兩種情形考慮問(wèn)題即可

詳解:

(1)證明:作EPCDP,EQBCQ,

∵∠DCA=BCA,

EQ=EP,

∵∠QEF+FEC=45°,PED+FEC=45°,

∴∠QEF=PED,

RtEQFRtEPD中,

RtEQFRtEPD,

EF=ED,

∴矩形DEFG是正方形;

(2)如圖2中,在RtABC中.AC=AB=2

EC=,

AE=CE,

∴點(diǎn)FC重合,此時(shí)△DCG是等腰直角三角形,易知CG=

(3)①當(dāng)DEAD的夾角為30°時(shí),∠EFC=120°,

②當(dāng)DEDC的夾角為30°時(shí),∠EFC=30°

綜上所述,∠EFC=120°30°.

點(diǎn)睛: 本題考查正方形的性質(zhì)、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年李明家買(mǎi)了一輛轎車,他連續(xù)記錄了一周中每天行駛的路程(如下表),以50km為標(biāo)準(zhǔn),多于50km的記“+”,不足50km的記“-”,剛好506m的記“0”.

周一

周二

周三

周四

周五

周六

周日

路程(km

-6

0

-12

7

-9

+15

+12

(1)請(qǐng)你求出李明家轎車一周中平均每天行駛多少千米?

(2)如果每行駛100km需要汽油8升,汽油價(jià)格6.85/升,請(qǐng)計(jì)算李明家轎車一個(gè)月(按30天計(jì)算)的汽油費(fèi)是多少元(精確到個(gè)位)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=(3-k)x-2k2+18.

(1)當(dāng)k為何值時(shí),它的圖象經(jīng)過(guò)原點(diǎn)?

(2)當(dāng)k為何值時(shí),它的圖象經(jīng)過(guò)點(diǎn)(0,-2)?

(3)當(dāng)k為何值時(shí),它的圖象平行于直線y=-x?

(4)當(dāng)k為何值時(shí),y隨x增大而減小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A,O,B依次在直線MN上,如圖1,現(xiàn)將射線OA繞點(diǎn)O順時(shí)針?lè)较蛞悦棵?/span>10°的速度旋轉(zhuǎn),同時(shí)射線OB繞著點(diǎn)O按逆時(shí)針?lè)较蛞悦棵?/span>15°的速度旋轉(zhuǎn),直線MN保持不動(dòng),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t秒(t≤12).

(1)在旋轉(zhuǎn)過(guò)程中,當(dāng)t=2時(shí),求∠AOB的度數(shù).

(2)在旋轉(zhuǎn)過(guò)程中,當(dāng)∠AOB=105°時(shí),求t的值.

(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)OAOB是某一個(gè)角(小于180°)的角平分線時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E,F(xiàn).設(shè)CP=x,EF=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:A是以BC為直徑的圓上的一點(diǎn),BE是⊙O的切線,CA的延長(zhǎng)線與BE交于E點(diǎn),F(xiàn)是BE的中點(diǎn),延長(zhǎng)AF,CB交于點(diǎn)P.

(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38 ,然后在式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39 ,

得:3SS=39-1,即2S=39-1,

S=.

得出答案后,愛(ài)動(dòng)腦筋的張紅想:如果把3換成字母m(m0且m1),能否求出1+m+m2+m3+m4+m2016的值?如能求出,其正確答案是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1有兩條長(zhǎng)度相等的相交線段AB、CD,它們相交的銳角中有一個(gè)角為60°,為了探究AD、CBCD(或AB)之間的關(guān)系,小亮進(jìn)行了如下嘗試:

(1)在其他條件不變的情況下使得ADBC,如圖2,將線段AB沿AD方向平移AD的長(zhǎng)度,得到線段DE,然后聯(lián)結(jié)BE,進(jìn)而利用所學(xué)知識(shí)得到AD、CBCD(或AB)之間的關(guān)系:   ;(直接寫(xiě)出結(jié)果)

(2)根據(jù)小亮的經(jīng)驗(yàn),請(qǐng)對(duì)圖1的情況(ADCB不平行)進(jìn)行嘗試,寫(xiě)出AD、CBCD(或AB)之間的關(guān)系,并進(jìn)行證明;

(3)綜合(1)、(2)的證明結(jié)果,請(qǐng)寫(xiě)出完整的結(jié)論:   

查看答案和解析>>

同步練習(xí)冊(cè)答案