【題目】計算:
(1)÷-×+; (2)--( -2);
(3)(2-)2017×(2+)2016-2-(-)0 (4)(a+2+b)÷(+)-(-).
【答案】(1)4+;(2);(3) 1; (4) 2.
【解析】
(1)先根據(jù)二次根式的乘法和除法法則進行計算,再根據(jù)二次根式減法法則計算,
(2)先對二次根式進行化簡,再計算括號里二次根式的減法,最后計算括號外二次根式的減法,
(3)先根據(jù)冪的運算法則進行簡便計算,再化簡絕對值和零指數(shù)冪的運算,再進行二次根式減法計算,
(4)先利用完全平方公式因式分解,再利用二次根式除法法則計算,最后計算二次根式減法.
(1)÷-×+,
=÷-×+,
=4-+,
=4+,
(2)--( -2),
=--( -),
=,
=,
(3)(2-)2017×(2+)2016-2-(-)0 ,
=2017×(2+)-2-(-)0 ,
=2017×(2+)-2-(-)0 ,
=×(2+)--1 ,
=2+--1 ,
=1,
(4)(a+2+b)÷(+)-(-),
=(+)2÷(+)-(-),
=(+)-(-)
=+-+,
=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在 上,CD⊥OA,垂足為點D,當△OCD的面積最大時,圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運動員中進行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計算甲、乙成績的方差,并從計算結(jié)果來分析,你認為哪位運動員的射擊成績更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列方程,屬于一元一次方程的有( 。
①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:五蓮縣新瑪特購物中心第一次用5000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進價和售價如下表(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 20 | 30 |
售價(元/件) | 29 | 40 |
(1)新瑪特購物中心將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(2)該購物中心第二次以第一次的進價又購進甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤比第一次獲得的總利潤多160元,求第二次乙種商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB是∠AOC的余角,∠AOD是∠AOC的補角,且∠BOD=2∠BOC,求∠BOD、∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元.
(1)求這兩種品牌計算器的單價;
(2)學(xué)校開學(xué)前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售,設(shè)購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)小明準備聯(lián)系一部分同學(xué)集體購買同一品牌的計算器,若購買計算器的數(shù)量超過5個,購買哪種品牌的計算器更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B在反比例函數(shù)y= (k>0,x>0)的圖象上,過點A、B作x軸的垂線,垂足分別為M、N,延長線段AB交x軸于點C,若OM=MN=NC,△AOC的面積為6,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C>∠B,AE平分∠BAC,F(xiàn)為射線AE上一點(不與點E重合),且FD⊥BC于D;
(1)如果點F與點A重合,且∠C=50°,∠B=30°,如圖1,求∠EFD的度數(shù);
(2)如果點F在線段AE上(不與點A重合),如圖2,問∠EFD與∠C﹣∠B有怎樣的數(shù)量關(guān)系?并說明理由.
(3)如果點F在△ABC外部,如圖3,此時∠EFD與∠C﹣∠B的數(shù)量關(guān)系是否會發(fā)生變化?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com