【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

【答案】見解析

【解析】試題分析: (1)在△DFC中,∠DFC=90°,∠C=30°,由已知條件求證;

2)求得四邊形AEFD為平行四邊形,若使AEFD為菱形則需要滿足的條件及求得;

3①∠EDF=90°時(shí),四邊形EBFD為矩形.在直角三角形AED中求得AD=2AE即求得.

②∠DEF=90°時(shí),由(2)知EF∥AD,則得∠ADE=∠DEF=90°,求得AD=AEcos60°列式得.

③∠EFD=90°時(shí),此種情況不存在.

1)證明:在△DFC中,∠DFC=90°,∠C=30°DC=2t,

∴DF=t

∵AE=t,

∴AE=DF

2)解:能.理由如下:

∵AB⊥BC,DF⊥BC

∴AE∥DF

AE=DF,

四邊形AEFD為平行四邊形.

AB=BCtan30°==5

∴AC=2AB=10

∴AD=AC﹣DC=10﹣2t

若使AEFD為菱形,則需AE=AD,

t=10﹣2t,t=

即當(dāng)t=時(shí),四邊形AEFD為菱形.

3)解:①∠EDF=90°時(shí),四邊形EBFD為矩形.

Rt△AED中,∠ADE=∠C=30°,

∴AD=2AE

10﹣2t=2t,t=

②∠DEF=90°時(shí),由(2)四邊形AEFD為平行四邊形知EF∥AD,

∴∠ADE=∠DEF=90°

∵∠A=90°﹣∠C=60°

∴AD=AEcos60°

10﹣2t=t,t=4

③∠EFD=90°時(shí),此種情況不存在.

綜上所述,當(dāng)t=秒或4秒時(shí),DEF為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程4x2+1=4x的根的情況是(
A.沒有實(shí)數(shù)根
B.只有一個(gè)實(shí)數(shù)根
C.有兩個(gè)相等的實(shí)數(shù)根
D.有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng):即(0,0)→(0,1) →(1,1)→(1,0)→…,且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是(
A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)D的坐標(biāo)為(1,﹣),且與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),A點(diǎn)的坐標(biāo)為(4,0).P點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且橫坐標(biāo)為m.

(1)求拋物線所對(duì)應(yīng)的二次函數(shù)的表達(dá)式.

(2)若動(dòng)點(diǎn)P滿足PAO不大于45°,求P點(diǎn)的橫坐標(biāo)m的取值范圍.

(3)是否存在P點(diǎn),使PAC=BCO?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4的算術(shù)平方根是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。試說明:

(1)AE∥CF;
(2)AB∥CD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市去年有4.7萬(wàn)名考生參加了中考,為了解這些考生的數(shù)學(xué)成績(jī),從中抽取了4000名考生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,以下說法正確的是(

A. 這4000名考生是總體的一個(gè)樣本

B. 這4.7萬(wàn)名考生的數(shù)學(xué)成績(jī)是總體

C. 每位考生是個(gè)體

D. 抽取的4000名考生是樣本容量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2x3y2和-x3myn是同類項(xiàng),則式子4m-2n的值是( )

A. -1 B. 0 C. 2 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案