【題目】如圖,已知正方形ABCD的邊長為4,以點A為圓心,2為半徑作圓,點E是⊙A上的任意一點,將點E繞點D按逆時針方向轉轉90°得到點F,連接AFDF,則的最小值是__

【答案】5

【解析】

連接AE,CF,易證△ADE≌△CDF,所以CF=AE,可知F點在以C為圓心,2為半徑的圓上運動,作出運動軌跡,在CD上截取CM=CF=1,利用相似可得FM=DF,當AFM三點共線時,AM的長度即為的最小值.

如圖,連接AE,CF

∵∠ADE+ADF=90°,∠ADF+CDF=90°,

∴∠ADE=CDF

在△ADE和△CDF中,

∴△ADE≌△CDFSAS

CF=AE,

F點在以C為圓心,2為半徑的圓上運動,

如圖所示,以C為圓心,2為半徑作圓C

CD上截取CM=CF=1,

,

又∵∠FCM=DCF

∴△CMF∽△CFD

,即

A、F、M三點共線時,AM的長度即為的最小值,

RtADM中,AD=4,DM=CD-CM=3

故答案為:5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, ,點在邊上移動(點不與點, 重合),滿足,且點、分別在邊、上.

)求證:

)當點移動到的中點時,求證: 平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與坐標軸交于點A-1,0)和點B0,-5).

1)求該二次函數(shù)的解析式;

2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最小,請求出點P的坐標;

3)設二次函數(shù)的圖象與x軸的另一交點為點C,連接BC,點N是線段BC上一點,過點Ny軸的平行線交拋物線于點M,求當四邊形OBMN為平行四邊形時,點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的正方形網格中,△ABC的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

1)將△ABC沿x軸翻折后再沿x軸向右平移1個單位,在圖中畫出平移后的△A1B1C1

2)作△ABC關于坐標原點成中心對稱的△A2B2C2

3)求B1的坐標   C2的坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題,探究函數(shù)yx22的圖象與性質,小張根據(jù)學習函數(shù)的經驗,對函數(shù)yx22的圖象與性質進行了研究,下面是小張的探究過程,請補充完整:

1)函數(shù)yx22的自變量取值范圍是 

2)下表是yx的幾組對應值:

x

4

3

2

1

0

1

2

3

4

y

n

3

0

1

0

1

0

3

m

m的值;

3)如圖,在平面直角坐標系xOy中,算出了以上表中各對對應值為坐標的點,根據(jù)算出的點,畫出該函數(shù)的圖象;

4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第四象限內的最低點是1,﹣1),結合函數(shù)的圖象,寫出該函數(shù)的其他性質(一條即可);

5)根據(jù)圖象回答:方程x22=﹣  個實數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD=4cm,AB=8cmP從點A出發(fā)沿邊上向點勻速運動,同時點從點出發(fā)沿邊上向點勻速運動,速度都是,運動時間是,于點,點關于的對稱點是,射線分別與,交于點

1  °;QF    .(用含的代數(shù)式表示)

2)當點與點重合時, 如圖②,求的值.

3)探究:在點,運動過程中,

的值是否是定值?若是,請求出這個值;若不是,請說明理由.

為何值時,以點,,為頂點的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°AC=6cm,BC=8cm,點DBC上一定點.動點PC出發(fā),以2cm/s的速度沿C→A→B方向運動,動點QD出發(fā),以1cm/s的速度沿D→B方向運動.點P出發(fā)5 s后,點Q才開始出發(fā),且當一個點達到B時,另一個點隨之停止.圖2是當△BPQ的面積Scm2)與點P的運動時間ts)的函數(shù)圖象.

1CD = ,

2)當點P在邊AB上時,為何值時,使得△BPQ△ABC為相似?

3)運動過程中,求出當△BPQ是以BP為腰的等腰三角形時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為( 。

A. B. 2 C. 2 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線yax24ax+3a2a≠0)的對稱軸與x軸交于點A,將點A向右平移3個單位長度,向上平移2個單位長度,得到點B

⑴點A的坐標為   ,點B的坐標為   

⑵若a=﹣1,當m1≤xm+1時,函數(shù)yax24ax+3a2的最大值為﹣10,求m的值;

⑶若拋物線與線段AB有公共點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案