【題目】如圖,AB是⊙O的直徑,弦CDAB于點H,點F上一點,連接AFCD的延長線于點E

1)求證:AFCACE;

2)若AC5,DC6,當(dāng)點F的中點時,求AF的值.

【答案】1)見解析;(2

【解析】

1)根據(jù)條件得出,推出∠AFC=∠ACD,結(jié)合公共角得出三角形相似;

2)根據(jù)已知條件證明△ACF≌△DEF,得出ACDE,利用勾股定理計算出AE的長度,再根據(jù)(1)中△AFC∽△ACE,得出,從而計算出AF的長度.

1)∵CDAB,AB是⊙O的直徑

∴∠AFC=∠ACD

∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC

∴△AFC ∽△ACE

2)∵四邊形ACDF內(nèi)接于⊙O

∴∠AFD+∠ACD180°

∵∠AFD+∠DFE180°

∴∠DFE=∠ACD

∵∠AFC=∠ACD

∴∠AFC=∠DFE

∵△AFC∽△ACE

∴∠ACF=∠DEF

F的中點

AFDF

∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AFDF

∴△ACF≌△DEF

ACDE5

CDABAB是⊙O的直徑

CHDH3

EH8

RtAHC中,AH2AC2CH216,

RtAHE中,AE2AH2EH280,∴AE4

∵△AFC∽△ACE

,即,

AF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°AC6cm.P、QBC邊上兩個動點(Q在點P右邊),PQ2cm,點P從點C出發(fā),沿CB向右運動,運動時間為t.5s后點Q到達點B,點P、Q停止運動,過點QQDBCAB于點D,連接AP,設(shè)ACPBQD的面積和為S(cm)St的函數(shù)圖像如圖2所示.

(1)1BC cm,點P運動的速度為 cm/s

(2)t為何值時,面積和S最小,并求出最小值;

(3)連接PD,以點P為圓心線段PD的長為半徑作⊙P,當(dāng)⊙P的邊相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6ABBC,ADCD,BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2BCD= °cosMCN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C90°,AC4BC3,點DAB邊上一點(不與A、B重合),若過點D的直線截得的三角形與ABC相似,并且平分ABC的周長,則AD的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:三角形的角平分線是初中幾何中一條非常重要的線段,它除了具有平分角、角平分線上的點到角兩邊的距離相等這些性質(zhì)外,還具有以下的性質(zhì):

如圖①,在△ABC中,AD平分∠BACBC于點D,則.提示:過點CCEADBA的延長線于點E

請根據(jù)上面的提示,寫出得到這一結(jié)論完整的證明過程.

結(jié)論應(yīng)用:如圖②,在RtABC中,∠C90°,AC8BC15,AD平分∠BACBC于點D.請直接利用問題探究的結(jié)論,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于,兩點,頂點在第一象限,點在該拋物線上.

1)若點坐標(biāo)為.

①求的函數(shù)關(guān)系式;

②已知兩點,,當(dāng)拋物線與線段沒有交點時,求的取值范圍;

2)若點在該拋物線的曲線段上(不與點重合),直線軸于點,過點作軸于點,連接.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在矩形ABCD中,AB8,BCx0x≤8),點E在邊CD上,且CECB,以AE為對角線作正方形AGEF.設(shè)正方形AGEF的面積y

1)當(dāng)點F在矩形ABCD的邊上時,x   

2)求yx的函數(shù)關(guān)系式及y的取值范圍.

3)當(dāng)矩形ABCD的一條邊將正方形AGEF的面積分為13兩部分時,直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將點定義為點關(guān)聯(lián)點”. 已知點在函數(shù)的圖像上,將點A關(guān)聯(lián)點記為點.

1)請在如圖基礎(chǔ)上畫出函數(shù)的圖像,簡要說明畫圖方法;

2)如果點在函數(shù)的圖像上,求點的坐標(biāo);

3)將點稱為點待定關(guān)聯(lián)點(其中),如果點待定關(guān)聯(lián)點在函數(shù)的圖像上,試用含的代數(shù)式表示點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案