已知函數(shù)y=ax2+bx+c的圖象如圖所示,那么函數(shù)y′=ax2+bx+c+3的圖象與x軸的交點個數(shù)有( 。
分析:由圖可知y=ax2+bx+c+3可以看作是函數(shù)y=ax2+bx+c的圖象向上平移3個單位而得到,進而得到交點的個數(shù).
解答:解:∵y=ax2+bx+c+3可以看作是函數(shù)y=ax2+bx+c的圖象向上平移3個單位而得到,
此時拋物線的頂點恰好在x軸上,
∴函數(shù)y′=ax2+bx+c+3的圖象與x軸的交點個數(shù)有1個,
故選B.
點評:本題考查了二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y=ax2+bx+c的圖象如左下圖所示,則函數(shù)y=ax+b的圖象可能是右下圖中的(  )精英家教網(wǎng)
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、已知函數(shù)y=ax2+bx+c(a≠0),給出下列四個判斷:①a>0;②2a+b=0;③b2-4ac>0;④a+b+c<0.以其中三個判斷作為條件,余下一個判斷作為結(jié)論,可得到四個命題,其中,真命題的個數(shù)有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y=ax2(a≠0)與直線y=2x-3交于A(1,b)
求:(1)a和b的值;
(2)當x取何值時,二次函數(shù)y=ax2中的y隨x的增大而增大;
(3)求拋物線y=ax2與直線y=2x-3的另一個交點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y=ax2-2x與函數(shù)y=
a
x
,則它們在同一坐標系中的大致圖象可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知函數(shù)y=ax2+bx+c的圖象如圖所示,試根據(jù)圖象回答下列問題:
(1)求出函數(shù)的解析式;
(2)寫出拋物線的對稱軸方程和頂點坐標?
(3)當x取何值時y隨x的增大而減?
(4)方程ax2+bx+c=0的解是什么?
(5)不等式ax2+bx+c>0的解集是什么?

查看答案和解析>>

同步練習冊答案