如圖,在Rt△ABC中,∠A=90°,AB=8,AC=6.若動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿線段BA運(yùn)動(dòng)到點(diǎn)A為止,運(yùn)動(dòng)速度為每秒2個(gè)單位長度.過點(diǎn)D作DE∥BC交AC于點(diǎn)E,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x秒,AE的長為y.
(1)求出y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),△BDE的面積S有最大值,最大值為多少?

【答案】分析:(1)根據(jù)已知條件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的對應(yīng)邊成比例求得;最后用x、y表示該比例式中的線段的長度;
(2)根據(jù)∠A=90°得出S△BDE=•BD•AE,再運(yùn)用函數(shù)性質(zhì)求解即可.
解答:解:(1)由題可知,BD=2x,AD=8-2x,
∵DE∥BC
∴△ADE∽△ABC



其中0<x≤4;

(2)∵∠A=90°
∴AE是△BDE中BD邊上的高,

∴S=×2x×(-x+6)
=-(x2-4x+4)+6
=-(x-2)2+6.
∴當(dāng)x=2時(shí),S有最大值,且最大值為6.
點(diǎn)評:本題主要考查相似三角形的判定、三角形的面積及涉及到二次函數(shù)的最值問題,找到等量比是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案