【題目】如圖,AB是⊙O的直徑,AB=12,弦CD⊥AB于點(diǎn)E,∠DAB=30°,則圖中陰影部分的面積是( )
A.18πB.12πC.18π﹣2D.12π﹣9
【答案】D
【解析】
首先連接OD,OC,根據(jù)題意得出∠DOB=2∠DAB=60°,利用垂徑定理結(jié)合銳角三角函數(shù)求出DE與OE的長(zhǎng),最后根據(jù)陰影部分的面積S=S扇形CODS△COD進(jìn)一步分析求解即可.
如圖所示,連接OD,OC,
∵∠DAB=30°,
∴∠DOB=2∠DAB=60°,
∵AB是⊙O的直徑,AB=12,弦CD⊥AB,
∴OA=OD=OB=6,CE=DE,
∴∠COB=∠DOB=60°,
∴∠COD=120°,
在Rt△OED中,DE=OD×sin60°=,OE=OD×cos60°=,
∴CD=2DE=,
∴陰影部分的面積S=S扇形CODS△COD=,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校學(xué)生寒假閱讀時(shí)間情況調(diào)查,抽樣統(tǒng)計(jì)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合信息解決下列問(wèn)題:
閱讀時(shí)間(小時(shí)) | (A) | (B) | (C) | (D) |
人數(shù) | 60 | 80 |
(1)這次統(tǒng)計(jì)A類 人;D類 人;
(2)如果該校有1200學(xué)生,那么D類學(xué)生數(shù)量約為多少人?
(3)甲、乙、丙、丁4名學(xué)生是閱讀屬于D類學(xué)生,他們分別來(lái)自九年級(jí)1人,八年級(jí)1人,七年級(jí)2人,現(xiàn)抽取2人電話回訪,則抽取到2人同為七年級(jí)學(xué)生的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩張完全重合的矩形紙片,將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD,MF,若BD=4cm,∠ADB=30°.
(1)試探究線段BD與線段MF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(2)把△BCD與△MEF剪去,將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,邊AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時(shí),求β的度數(shù).
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組鄰邊相等且有一組對(duì)角互補(bǔ)的凸四邊形叫做等補(bǔ)四邊形
(1)概念理解
①根據(jù)上述定義舉一個(gè)等補(bǔ)四邊形的例子:
②如圖1,四邊形ABCD中,對(duì)角線BD平分∠ABC,∠A+∠C=180°,求證:四邊形ABCD是等補(bǔ)四邊形
(2)性質(zhì)探究:
③小明在探究時(shí)發(fā)現(xiàn),由于等補(bǔ)四邊形有一組對(duì)角互補(bǔ),可得等補(bǔ)四邊形的四個(gè)頂點(diǎn)共圓,如圖2,等補(bǔ)四邊形ABCD內(nèi)接于⊙O,AB=AD,則∠ACD ∠ACB(填“>”“<”或“=“);
④若將兩條相等的鄰邊叫做等補(bǔ)四邊形的“等邊”,等邊所夾的角叫做“等邊角”,它所對(duì)的角叫做“等邊補(bǔ)角”連接它們頂點(diǎn)的對(duì)角線叫做“等補(bǔ)對(duì)角線”,請(qǐng)用語(yǔ)言表述③中結(jié)論:
(3)問(wèn)題解決
在等補(bǔ)四邊形ABCD中,AB=BC=2,等邊角∠ABC=120°,等補(bǔ)對(duì)角線BD與等邊垂直,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(,0)和(m,y),對(duì)稱軸為直線x=﹣1,下列5個(gè)結(jié)論:其中正確的結(jié)論為_____.(注:只填寫(xiě)正確結(jié)論的序號(hào))①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年2月22日深圳地鐵10號(hào)線華南城站試運(yùn)行,預(yù)計(jì)今年6月正式開(kāi)通.在地鐵的建設(shè)中,某段軌道的鋪設(shè)若由甲乙兩工程隊(duì)合做,12天可以完成,共需工程費(fèi)用27720元;已知乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多250元.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?
(2)若工程管理部門(mén)決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸、y軸上,OA=4,OC=3,直線m:y=﹣x從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)直線m與矩形OABC的兩邊分別交于點(diǎn)M,N,直線m運(yùn)動(dòng)的時(shí)間為t(秒),設(shè)△OMN的面積為S,則能反映S與t之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)在一塊長(zhǎng)為16m,寬為9m的矩形空地上新修三條寬度相同的小路,其中一條和矩形的一邊平行,另外兩條和矩形的另一邊平行,空地剩下的部分種植花草,使得花草區(qū)域占地面積為120m2.設(shè)小路的寬度為xm,則下列方程:
①(16﹣2x)(9﹣x)=120
②16×9﹣9×2x﹣(16﹣2x)x=120
③16×9﹣9×2x﹣16x+x2=120,
其中正確的是( 。
A.①B.②C.①②D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) M 為 AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過(guò)點(diǎn) C 作 CD⊥BN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB=20,MD=14,則 NE 的長(zhǎng)為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com