(1)如圖1,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,試猜想線段CE與DE的大小與位置關系,并證明你的結論.
(2)如圖2,等腰Rt△ABC中,∠ACB=90°.直線DE經過△ABC內部,AD⊥DE于點D,BE⊥DE于點E,試猜想線段AD、BE、DE之間滿足什么關系?證明你的結論.

(1)解:CE=DE,CE⊥DE.
理由如下:∵AC⊥AB,DB⊥AB,
∴∠A=∠B=90°,
在△ACE和△BED中,
,
∴△ACE≌△BED(SAS),
∴CE=DE,∠C=∠BED,
∵∠C+∠AEC=90°,
∴∠BED+∠AEC=90°,
∴∠CED=180°-90°=90°,
∴CE⊥DE;

(2)解:AD=BE+DE.
理由如下:
∵等腰Rt△ABC中,∠ACB=90°,
∴AC=BC,∠ACD+∠BCE=90°,
∵AD⊥DE于點D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
∵AD⊥DE于點D,BE⊥DE于點E,
∴∠ADC=∠BEC=90°,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(SAS),
∴AD=CE,CD=BE,
∵CE=CD+DE,
∴AD=BE+DE.
分析:(1)根據(jù)“邊角邊”證明△ACE和△BED全等,根據(jù)全等三角形對應邊相等可得CE=DE,根據(jù)全等三角形對應角相等可得∠C=∠BED,然后證明∠CED=90°,從而得到CE⊥DE;
(2)根據(jù)同角的余角相等可得∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應邊相等可得AD=CE,CD=BE,再結合圖形即可得到AD、BE、DE三者之間的關系.
點評:本題考查了全等三角形的判定與性質,兩個小題都利用等角的余角相等得到相等的角,從而得到三角形全等的條件是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網下列說法:
(1)如圖1,已知PA=PB,則PO是線段AB的垂直平分線;
(2)對于反比例函數(shù)y=
2
x
,(x1,y1),(x2,y2)是其圖象上兩點,若x1<x2,則y1>y2; 
(3)對角線互相垂直平分的四邊形是菱形;
(4)如圖2,在△ABC中,∠A=30°,BC=2,則AC=4;
(5)一組對邊平行的四邊形是梯形;    
(6)y=
k
x
是反比例函數(shù);
(7)若一個等腰三角形的兩邊長為2和3,那么它的周長為7,
其中正確的有( 。﹤.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連接AE、BF.求證:AE=BF;
(2)為響應市人民政府“形象勝于生命”的號召,在甲建筑物上從A點到E點掛一長為30m的宣傳條幅(如圖2),在乙建筑物的頂部D點測得頂端A點的仰角為45°,測得條幅底端E點的俯角為30°,求底部不能直接到達的兩建筑物之間的水平距離(答案可帶根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知雙曲線y=
k
x
(k>0)
與直線y=k′x交于A,B兩點,點A在第一象限.試解答下列問題:
(1)若點A的坐標為(4,2),則點B的坐標為
 
;若點A的橫坐標為m,則點B的坐標可表示為
 
;
(2)如圖2,過原點O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點,點P在第一象限.
①說明四邊形APBQ一定是平行四邊形;
②設點A,P的橫坐標分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應滿足的條件;若不可能,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知正方形ABCD,將一個45度角∝的頂點放在D點并繞D點旋轉,角的兩邊分別交AB邊和BC邊于點E和F,連接EF.求證:EF=AE+CF
(1)小明是這樣思考的:延長BC到G,使得CG=AE,連接DG,先證△DAE≌△DCG,再證△DEF≌△DGF,請你借助圖2,按照小明的思路,寫出完整的證明思路.
(2)劉老師看到這條題目后,問了小明兩個小問題:①如果正方形的邊長和△BEF的面積都等于6,求EF的長②將角∝繞D點繼續(xù)旋轉,使得角∝的兩邊分別和AB邊延長線、BC邊的延長線交于E和F,如圖3所示,猜想EF、AE、CF三線段之間的數(shù)量關系并給予證明.請你幫忙解決.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖甲,已知A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,且AB=CD.
(1)試問OE=0F嗎?請說明理由.
(2)若△DEC沿AC方向平移到如圖乙的位置,其余條件不變,上述結論是否仍成立?請說明理由.

查看答案和解析>>

同步練習冊答案