已知:如圖,△ABC中,AB=AC,∠EAC是△ABC的外角,AD平分∠EAC.
求證:AD∥BC.
分析:由角平分線定義可得∠EAD=
1
2
∠EAC,再由三角形外角性質可得∠EAD=∠B,然后利用平行線的判定定理即可證明題目結論.
解答:證明:∵AD平分∠EAC,
∴∠EAD=
1
2
∠EAC.
又∵AB=AC,
∴∠B=∠C,∠EAC=∠B+∠C,
∴∠B=
1
2
∠EAC.
∴∠EAD=∠B.
所以AD∥BC.
點評:本題主要考查角平分線的性質和三角形外角性質,也利用了平行線的判定.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案