【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學(xué)將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當(dāng)CE=AF時,如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時,如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時,y有最小值,最小值是多少?
【答案】
(1)
解:DF=DE.理由如下:
如答圖1,連接BD.
∵四邊形ABCD是菱形,
∴AD=AB.
又∵∠DAB=60°,
∴△ABD是等邊三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠DAF=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.∵在△ADF與△BDE中,,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(2)
解:DF=DE.理由如下:
如答圖2,連接BD.∵四邊形ABCD是菱形,
∴AD=AB.
又∵∠DAB=60°,
∴△ABD是等邊三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠DAF=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.
∵在△ADF與△BDE中,,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(3)
解:
由(2)知,DE=DF,又∵∠EDF=60°,
∴△DEF是等邊三角形,
∵四邊形ABCD是邊長為2的菱形,
∴DH=,
∵BF=CE=x,
∴AF=x﹣2,
∴FH=AF+AH=x﹣2+1=x﹣1,
∴DF==,DG=×,
∴y=S△DEF=×EF×DG=×××=(x﹣1)2+.
∴當(dāng)x=1時,y最小值=.
【解析】(1)如答圖1,連接BD.根據(jù)題干條件首先證明∠ADF=∠BDE,然后證明△ADF≌△BDE(ASA),得DF=DE;
(2)如答圖2,連接BD.根據(jù)題干條件首先證明∠ADF=∠BDE,然后證明△ADF≌△BDE(ASA),得DF=DE;
(3)根據(jù)(2)中的△ADF≌△BDE得到:△DEF是等邊三角形,AF=BE.所以要表示△DEF的面積需要用含x的代數(shù)式把底EF和高DG表示出來.據(jù)此列出y關(guān)于x的二次函數(shù),通過求二次函數(shù)的最值來求y的最小值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y= (k≠0,x>0)的圖象如圖所示,若z= ,則z關(guān)于x的函數(shù)圖象可能為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張長為,寬為(a>b>2)的長方形紙片上的四個角處各剪去一個邊長為1的小正方形,然后做成一個無蓋的長方體盒子.
(1)做成的長方體盒子的體積為 (用含的代數(shù)式表示);
(2)若長方形紙片的周長為30,面積為100,求做成的長方體盒子的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線;
(2)若PB=6,DB=8,求⊙O的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列文字與例題,并解答:
將一個多項式分組進行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法.
例如:以下式子的分解因式的方法就稱為分組分解法.
A2+2ab+b2+ac+bc
原式=(a2+2ab+b2)+ac+bc
=(a+b)2+c(a+b)
=(a+b)(a+b+c)
(1)試用“分組分解法”因式分解:
(2)已知四個實數(shù)a,b,c,d,滿足a≠b,c≠d,并且aa+ac=12k,b2+bc=12k,c2+ac=24k,d2+ad=24k
,同時成立.
①當(dāng)k=1時,求a+c的值;
②當(dāng)k≠0時,用含a的代數(shù)式分別表示、、 (直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)計算:( ﹣2)0+(﹣1)2014+ ﹣sin45°;
(2)先化簡,再求值:(a2b+ab)÷ ,其中a= +1,b= ﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是兩個全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點A,EF與AC交于點M .
(1)求證:∠BAE=∠MEC;
(2)當(dāng)E在BC中點時,請求出ME:MF的值;
(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com