【題目】如圖,平行四邊形ABCD中,D點(diǎn)在拋物線y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是拋物線與y軸的交點(diǎn).

(1)求直線AC和拋物線的解析式;
(2)動(dòng)點(diǎn)P從A到D,同時(shí)動(dòng)點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動(dòng).問(wèn):當(dāng)P運(yùn)動(dòng)到何處時(shí),△APQ是直角三角形?
(3)在(2)中當(dāng)P運(yùn)動(dòng)到某處時(shí),四邊形PDCQ的面積最小,求此時(shí)△CMQ的面積.

【答案】
(1)

解:如圖1,∵tan∠ACB= ,

= ,

∴設(shè)AO=3x,CO=4x,∵OB=OC,

∴BO=4x,

∴AB2=AO2+BO2

則25=25x2,

解得:x=1(負(fù)數(shù)舍去),

∴AO=3,BO=CO=4,

∴A(0,3),B(﹣4,0),C(4,0),

∴設(shè)直線AC的解析式為:y=kx+d,

,

解得:

故直線AC的解析式為:y=﹣ x+3;

∵四邊形ABCD是平行四邊形,

∴BC=AD=8,

∴D(8,3),

∵B,D點(diǎn)都在拋物線y= x2+bx+c上,

,

解得:

故此拋物線解析式為:y= x2 x﹣3


(2)

解:①如圖2,∵OA=3,OB=4,

∴AC=5.

設(shè)點(diǎn)P運(yùn)動(dòng)了t秒時(shí),PQ⊥AC,此時(shí)AP=t,CQ=t,AQ=5﹣t,

∵PQ⊥AC,

∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,

∴△APQ∽△CAO,

= ,即 = ,

解得:t=

②如圖3,

設(shè)點(diǎn)P運(yùn)動(dòng)了t秒時(shí),當(dāng)QP⊥AD,此時(shí)AP=t,CQ=t,AQ=5﹣t,

∵QP⊥AD,

∴∠APQ=∠AOC=90°,∠PAQ=∠ACO,

∴△AQP∽△CAO,

= ,即 = ,

解得:t=

即當(dāng)點(diǎn)P運(yùn)動(dòng)到距離A點(diǎn) 個(gè)單位長(zhǎng)度處,△APQ是直角三角形


(3)

解:如圖4,∵S四邊形PDCQ+SAPQ=SACD,且SACD= ×8×3=12,

∴當(dāng)△APQ的面積最大時(shí),四邊形PDCQ的面積最小,

當(dāng)動(dòng)點(diǎn)P運(yùn)動(dòng)t秒時(shí),AP=t,CQ=t,AQ=5﹣t,

設(shè)△APQ底邊AP上的高為h,作QH⊥AD于點(diǎn)H,

由△AQH∽△CAO可得: = ,

解得:h= (5﹣t),

∴SAPQ= (5﹣t)= (﹣t2+5t)=﹣ (t﹣ 2+ ,

∴當(dāng)t= 時(shí),SAPQ達(dá)到最大值 ,此時(shí)S四邊形PDCQ=12﹣ = ,

故當(dāng)點(diǎn)P運(yùn)動(dòng)到距離點(diǎn)A, 個(gè)單位處時(shí),四邊形PDCQ面積最小,

則AQ=QC= ,

故△CMQ的面積為: SAMC= × ×4×6=6.


【解析】(1)首先利用銳角三角函數(shù)關(guān)系得出A,C點(diǎn)坐標(biāo),再求出一次函數(shù)解析式,根據(jù)平行四邊形的性性質(zhì)求出點(diǎn)D坐標(biāo),利用待定系數(shù)法可求出b、c的值,繼而得出二次函數(shù)表達(dá)式;(2)設(shè)點(diǎn)P運(yùn)動(dòng)了t秒時(shí),PQ⊥AC,此時(shí)AP=t,CQ=t,AQ=5﹣t,再由△APQ∽△CAO或△AQP∽△CAO,利用對(duì)應(yīng)邊成比例可求出t的值,繼而確定點(diǎn)P的位置;(3)只需使△APQ的面積最大,就能滿(mǎn)足四邊形PDCQ的面積最小,設(shè)△APQ底邊AP上的高為h,作QH⊥AD于點(diǎn)H,由△AQH∽△CAO,利用對(duì)應(yīng)邊成比例得出h的表達(dá)式,繼而表示出△APQ的面積表達(dá)式,即可得出四邊形PDCQ的最小值,也可確定點(diǎn)P的位置,進(jìn)而得出Q的位置,進(jìn)而得出△CMQ的面積.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B=45°,∠C=30°,點(diǎn)D是BC上一點(diǎn),連接AD,過(guò)點(diǎn)A作AG⊥AD,在AG上取點(diǎn)F,連接DF.延長(zhǎng)DA至E,使AE=AF,連接EG,DG,且GE=DF.

(1)若AB=2 ,求BC的長(zhǎng);
(2)如圖1,當(dāng)點(diǎn)G在AC上時(shí),求證:BD= CG;
(3)如圖2,當(dāng)點(diǎn)G在AC的垂直平分線上時(shí),直接寫(xiě)出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為x=﹣2,點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.
(3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠PDA=90°時(shí),Rt△ADP與Rt△AOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: ﹣3tan30°+(π﹣4)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,D點(diǎn)在拋物線y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是拋物線與y軸的交點(diǎn).

(1)求直線AC和拋物線的解析式;
(2)動(dòng)點(diǎn)P從A到D,同時(shí)動(dòng)點(diǎn)Q從C到A都以每秒1個(gè)單位的速度運(yùn)動(dòng).問(wèn):當(dāng)P運(yùn)動(dòng)到何處時(shí),△APQ是直角三角形?
(3)在(2)中當(dāng)P運(yùn)動(dòng)到某處時(shí),四邊形PDCQ的面積最小,求此時(shí)△CMQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次自行車(chē)越野賽中,甲乙兩名選手行駛的路程y(千米)隨時(shí)間x(分)變化的圖象(全程)如圖,根據(jù)圖象判定下列結(jié)論不正確的是( )

A.甲先到達(dá)終點(diǎn)
B.前30分鐘,甲在乙的前面
C.第48分鐘時(shí),兩人第一次相遇
D.這次比賽的全程是28千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組借助無(wú)人飛機(jī)航拍校園.如圖,無(wú)人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無(wú)人飛機(jī)的飛行速度為4米/秒,求這架無(wú)人飛機(jī)的飛行高度.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案