【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____.
【答案】2π-4
【解析】
由OC=4,點(diǎn)C在上,CD⊥OA,求得DC==,運(yùn)用S△OCD=OD,求得OD=時(shí)△OCD的面積最大,運(yùn)用陰影部分的面積=扇形AOC的面積-△OCD的面積求解.
∵OC=4,點(diǎn)C在上,CD⊥OA,∴DC==,∴S△OCD=OD,∴S△OCD2=OD2(16-OD2)=-OD4+4OD2=-(OD2-8)2+16,∴當(dāng)OD2=8,即OD=2時(shí)△OCD的面積最大,∴DC===2,∴∠COA=45°,∴陰影部分的面積=扇形AOC的面積-△OCD的面積=-4=2π-4,故答案為2π-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)若只沿y軸上下平移該拋物線后與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,且四邊形AMM1A1是菱形,寫(xiě)出平移后拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)務(wù)院辦公廳在2015年3月16日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.
(1)圖中△APD與哪個(gè)三角形全等:_____.
(2)猜想:線段PC、PE、PF之間存在什么關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線()與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過(guò)點(diǎn)A的直線l:與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線的對(duì)稱(chēng)軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.
(1)加工成的正方形零件的邊長(zhǎng)是多少mm?
(2)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少?請(qǐng)你計(jì)算.
(3)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AOB中,∠O=90°,AO=18cm,BO=30cm,動(dòng)點(diǎn)M從點(diǎn)A開(kāi)始沿邊AO以1cm/s的速度向終點(diǎn)O移動(dòng),動(dòng)點(diǎn)N從點(diǎn)O開(kāi)始沿邊OB以2cm/s的速度向終點(diǎn)B移動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).如果M、N兩點(diǎn)分別從A、O兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts時(shí)四邊形ABNM的面積為Scm2.
(1)求S關(guān)于t的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;
(2)判斷S有最大值還是有最小值,用配方法求出這個(gè)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com