【題目】問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
簡單應用:
(1)在圖①中,若AC=,BC=,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是 .
【答案】(1)3;(2);(3);(4)PQ=AC或PQ=AC.
【解析】
試題分析:(1)由題意可知:AC+BC=CD,所以將AC與BC的長度代入即可得出CD的長度;
(2)連接AC、BD、AD即可將問題轉(zhuǎn)化為第(1)問的問題,利用題目所給出的證明思路即可求出CD的長度;
(3)以AB為直徑作⊙O,連接OD并延長交⊙O于點D1,由(2)問題可知:AC+BC=CD1;又因為CD1=D1D,所以利用勾股定理即可求出CD的長度;
(4)根據(jù)題意可知:點E的位置有兩種,分別是當點E在直線AC的右側(cè)和當點E在直線AC的左側(cè)時,連接CQ、CP后,利用(2)和(3)問的結(jié)論進行解答.
試題解析:(1)由題意知:AC+BC=CD,∴=CD,∴CD=3,;
(2)連接AC、BD、AD,∵AB是⊙O的直徑,∴∠ADB=∠ACB=90°,∵,∴AD=BD,將△BCD繞點D,逆時針旋轉(zhuǎn)90°到△AED處,如圖③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三點共線,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;
(3)以AB為直徑作⊙O,連接OD并延長交⊙O于點D1,連接D1A,D1B,D1C,如圖④
由(2)的證明過程可知:AC+BC=D1C,∴D1C=,又∵D1D是⊙O的直徑,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:,∴,∵,∴==,∵m<n,∴CD=;
(3)當點E在直線AC的左側(cè)時,如圖⑤,連接CQ,PC,∵AC=BC,∠ACB=90°,點P是AB的中點,∴AP=CP,∠APC=90°,又∵CA=CE,點Q是AE的中點,∴∠CQA=90°,設AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的證明過程可知:AQ+CQ=PQ,∴PQ=a,∴PQ=AC;
當點E在直線AC的右側(cè)時,如圖⑥,連接CQ、CP,同理可知:∠AQC=∠APC=90°,設AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的結(jié)論可知:PQ=(CQ﹣AQ),∴PQ=AC.
綜上所述,線段PQ與AC的數(shù)量關系是PQ=AC或PQ=AC.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解學生家長對孩子用手機的態(tài)度問題,隨機抽取了100名家長進行問卷調(diào)查,每位學生家長只有一份問卷,且每份問卷僅表明一種態(tài)度(這100名家長的問卷真實有效),將這100份問卷進行回收整理后,繪制了如下兩幅不完整的統(tǒng)計圖.
(1)“從來不管”的問卷有 份,在扇形圖中“嚴加干涉”的問卷對應的圓心角為 .
(2)請把條形圖補充完整.
(3)若該校共有學生2000名,請估計該校對手機問題“嚴加干涉”的家長有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復制”得到拋物線F2,點A、B與(2)中所求的點M的對應點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市七年級一次期末數(shù)學測試情況,從8萬名考生中抽取了1000名學生的數(shù)學成績進行統(tǒng)計分析,下列說法中正確的是( 。.
A. 這1000名學生是總體的一個樣本 B. 每位學生的數(shù)學成績是個體
C. 8萬名學生是總體 D. 1000名學生是樣本容量
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com