【題目】如圖1,在△ABC中,∠B=60°,點M從點B出發(fā)沿射線BC方向,在射線BC上運動.在點M運動的過程中,連結AM,并以AM為邊在射線BC上方,作等邊△AMN,連結CN.
(1)當∠BAM= °時,AB=2BM;
(2)請?zhí)砑右粋條件: ,使得△ABC為等邊三角形;
①如圖1,當△ABC為等邊三角形時,求證:CN+CM=AC;
②如圖2,當點M運動到線段BC之外(即點M在線段BC的延長線上時),其它條件不變(△ABC仍為等邊三角形),請寫出此時線段CN、CM、AC滿足的數(shù)量關系,并證明.
【答案】(1)30;(2)AB=AC;①證明見解析;②CN-CM=AC,理由見解析
【解析】
(1)根據(jù)含30°角的直角三角形的性質(zhì)解答即可;
(2)利用含一個60°角的等腰三角形是等邊三角形的判定解答;①利用等邊三角形的性質(zhì)和全等三角形的判定證明△BAM≌△CAN,從而利用全等三角形的性質(zhì)求解;②利用等邊三角形的性質(zhì)和全等三角形的判定證明△BAM≌△CAN,從而利用全等三角形的性質(zhì)求解.
解:(1)當∠BAM=30°時,
∴∠AMB=180°﹣60°﹣30°=90°,
∴AB=2BM;
故答案為:30;
(2)∵在△ABC中,∠B=60°
∴當AB=AC時,可得可得△ABC為等邊三角形;
故答案為:AB=AC;
①如圖1中,
∵△ABC與△AMN是等邊三角形,
∴AB=AC=BC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中, ,
∴△BAM≌△CAN(SAS),
∴BM=CN;
∴AC=BC=BM+CM=CM+CN
即CN+CM=AC;
②CN-CM=AC,
理由:如圖2中,
∵△ABC與△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAC+∠MAC=∠MAN+∠MAC,
即∠BAM=∠CAN,
在△BAM與△CAN中, ,
∴△BAM≌△CAN(SAS),
∴BM=CN
∴AC=BC=BM-CM=CN-CM
即CN-CM=AC
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結論:是的平分線;;;線段DE是的中線;其中正確的有 ()個.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應新舊動能轉換.提高公司經(jīng)濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600臺;每臺售價為45萬元時,年銷售量為550臺.假定該設備的年銷售量y(單位:臺)和銷售單價(單位:萬元)成一次函數(shù)關系.
(1)求年銷售量與銷售單價的函數(shù)關系式;
(2)根據(jù)相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,過D點作AB垂線,交AC于E,交BC的延長線于F.
(1)∠1與∠B有什么關系?說明理由.
(2)若BC=BD,請你探索AB與FB的數(shù)量關系,并且說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,AB⊥BE,垂足為B,DE⊥BE,垂足為E,且AC=DF,BF=EC.求證:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)閱讀材料:分解因式:
解:
=
=
=
=
=,
此種方法抓住了二次項和一次項的特點,然后加一項,使三項成為完全平方式,我們把這種分解因式的方法叫配方法.
(1)用上述方法分解因式:;
(2)無論取何值,代數(shù)式總有一個最小值,請嘗試用配方法求出當取何值時代數(shù)式的值最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面一元二次方程的解法中,正確的是( )
A. (x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B. (2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=
C. (x+2)2+4x=0,∴x1=2,x2=-2
D. x2=x 兩邊同除以x,得x=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB、CD邊于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)求證:△ADE≌△CBF;
(3)當四邊形BEDF是菱形時,直接寫出線段EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com