【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段AB,那么A﹣25)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A. 25B. 5,2C. 4D. ,4

【答案】B

【解析】∵線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段AB′,∴△ABO≌△ABO′,∠AOA′=90°,∴AO=AO

ACy軸于C,AC′⊥x軸于C′,∴∠ACO=∠ACO=90°.

∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠AOC′.

在△ACO和△ACO中,,∴△ACO≌△ACO(AAS),∴AC=AC′,CO=CO

A(﹣2,5),∴AC=2,CO=5,∴AC′=2,OC′=5,∴A′(5,2).

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有分別標(biāo)有數(shù)字-3、-1、0、2的四個(gè)小球,除數(shù)字不同外,小球沒(méi)有任何區(qū)別,每次試驗(yàn)先攪拌均勻.

(1)從中任取一球,將球上的數(shù)字記為a,則關(guān)于x的一元二次方程ax2-2ax+a+3=0有實(shí)數(shù)根的概率________;

(2)從中任取一球,將球上的數(shù)字作為點(diǎn)的橫坐標(biāo),記為x(不放回);再任取一球,將球上的數(shù)字作為點(diǎn)的縱坐標(biāo),記為y,試用畫(huà)樹(shù)狀圖(或列表法)表示出點(diǎn)(x,y)所有可能出現(xiàn)的結(jié)果,并求點(diǎn)(x,y)落在第二象限內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的開(kāi)口向上頂點(diǎn)為P

1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;

2)若此拋物線經(jīng)過(guò)(4,一1),當(dāng)-1x2時(shí),求y的取值范圍(用含a的代數(shù)式表示)

3)若a1,且當(dāng)0x1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AC5,AB7,BC4,點(diǎn)D在邊AB上,且AD3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上作正方形PDMN,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,正方形PDMNABC重疊部分的面積為S

1)用含有t的代數(shù)式表示線段PD的長(zhǎng)

2)當(dāng)點(diǎn)N落在ABC的邊上時(shí),求t的值

3)求St的函數(shù)關(guān)系式

4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),作點(diǎn)N關(guān)于CD的對(duì)稱點(diǎn)N,當(dāng)NABC的某一個(gè)頂點(diǎn)所連的直線平分ABC的面積時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的課余生活,某校記劃開(kāi)展三種拓展課活動(dòng),分別是“文學(xué)賞析”,“趣味數(shù)學(xué)”,“科學(xué)實(shí)驗(yàn)”等項(xiàng)目,要求每位學(xué)生自主選擇其中一項(xiàng)拓展課參加.隨機(jī)抽取該校各年段部分學(xué)生,對(duì)選擇拓展課的意向進(jìn)行調(diào)査,將調(diào)查的結(jié)果制作成以下統(tǒng)計(jì)圖和不完整的統(tǒng)計(jì)表.

某校被調(diào)查學(xué)生選擇拓展課意向統(tǒng)計(jì)表

選擇意向

所占百分比

文學(xué)賞析

   

趣味數(shù)學(xué)

35%

科學(xué)實(shí)驗(yàn)

   

其它

30%

1)該校有2000名學(xué)生,請(qǐng)你估計(jì)大約有多少名學(xué)生參加科學(xué)實(shí)驗(yàn)拓展課,并補(bǔ)全統(tǒng)計(jì)表.

2)該校參加科學(xué)實(shí)驗(yàn)拓展課的學(xué)生隨機(jī)分成A,B,C三個(gè)人數(shù)相同的班級(jí).小慧和小明都參加科學(xué)實(shí)驗(yàn)拓展課,求他們同班級(jí)的概率(畫(huà)樹(shù)狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BCAC的中點(diǎn),連接DE. △EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.

1)問(wèn)題發(fā)現(xiàn)

當(dāng)時(shí),;當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.

3)問(wèn)題解決

當(dāng)△EDC旋轉(zhuǎn)至AD、E三點(diǎn)共線時(shí),直接寫(xiě)出線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABD中,ABAD,以AB為直徑的⊙FBD于點(diǎn)C,交ADE,CG是⊙F的切線,CGAD于點(diǎn)G

1)求證:CGAD;

2)填空:

①若BDA的面積為80,則BCF的面積為   ;

②當(dāng)∠BAD的度數(shù)為   時(shí),四邊形EFCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(60).拋物線經(jīng)過(guò)A、C兩點(diǎn),與AB邊交于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;

當(dāng)S最大時(shí),在拋物線的對(duì)稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請(qǐng)直接寫(xiě)出所有符合條件的F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測(cè)站,AB的正東方向,有一艘小船停在點(diǎn)P,A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向,BP=6km.

(1)A、B兩觀測(cè)站之間的距離;

(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測(cè)站B與小船的最短距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案