拋物線的對稱軸為直線_______,頂點坐標(biāo)為______,與軸的交點坐標(biāo)為________;
x=1,(1,-9), (0,8)

試題分析:將一般式轉(zhuǎn)化為頂點式,可確定拋物線的對稱軸及頂點坐標(biāo),令x=0,可確定拋物線與y軸的交點坐標(biāo).

∴拋物線的對稱軸為直線x=1,頂點坐標(biāo)為(1,-9),
令x=0,得y=-8,故拋物線與y軸交于(0,-8).
點評:求拋物線的對稱軸,頂點坐標(biāo),可采用公式法,也可以用配方法將拋物線解析式寫成頂點式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線y=2x2-12x+16繞它的頂點旋轉(zhuǎn)180°,所得的解析式是(  )
A.y=-2x2-12x+16B.y=-2x2+12x-16
C.y=-2x2+12x-19D.y=-2x2+12x-20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠ACB=90°,AC=BC,點A、C在x軸上,點B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的二次函數(shù)圖象經(jīng)過點B、D.

(1)用m的代數(shù)式表示點A、D的坐標(biāo);
(2)求這個二次函數(shù)關(guān)系式;
(3)點Q(x,y)為二次函數(shù)圖象上點P至點B之間的一點,連接PQ、BQ,當(dāng)x為何值時,四邊形ABQP的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線,與軸交于A、B兩點,點為拋物線的頂點。點P在拋物線的對稱軸上,設(shè)⊙P的半徑為,當(dāng)⊙P與軸和直線BC都相切時,則圓心P的坐標(biāo)為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的頂點坐標(biāo)是(   )
A.(1,-3)B.(-1,-3)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把一邊長為60cm的正方形硬紙板,進行適當(dāng)?shù)募舨茫鄢梢粋長方體盒子(紙板的厚度忽略不計).
(1)如圖1,若在正方形硬紙板的四角各剪一個同樣大小的正方形,將剩余部分折成一個無蓋的長方體盒子.
①要使折成的長方體盒子的底面積為576cm2,那么剪掉的正方形的邊長為多少?
②折成的長方體盒子的側(cè)面積是否有最大值?如果有,求出這個最大值和此時剪掉的正方形的邊長;如果沒有,說明理由.
(2)如圖2,若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分正好折成一個有蓋的長方體盒子.若折成的一個長方體盒子的表面積為2800cm2,求此時長方體盒子的長、寬、高(只需求出符合要求的一種情況).
   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖象與軸交點的坐標(biāo)是                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的頂點坐標(biāo)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的頂點坐標(biāo)是         

查看答案和解析>>

同步練習(xí)冊答案