【題目】已知直線,拋物線

當(dāng)時(shí),求直線與拋物線的交點(diǎn)坐標(biāo);

當(dāng),時(shí),將直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與拋物線交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),求,兩點(diǎn)的坐標(biāo);

若將中的條件去掉,其他條件不變,且,求的取值范圍.

【答案】(1) 直線與拋物線的交點(diǎn)坐標(biāo)是;(2) ,;(3)

【解析】

(1)聯(lián)立方程,解方程求得即可;

(2)由題意得旋轉(zhuǎn)后的直線的解析式為y=x,然后聯(lián)立方程,解方程求得即可;

(3)根據(jù)題意求得交點(diǎn)坐標(biāo),然后根據(jù)勾股定理表示出AB,得出不等式,解不等式即可求得c的取值范圍.

,,

拋物線

直線與拋物線的交點(diǎn)坐標(biāo)是;

設(shè)直線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到直線,

而直線軸的夾角為

旋轉(zhuǎn)后直線軸的夾角為,

旋轉(zhuǎn)后的直線的解析式為,

,

,

若將中的條件去掉,其他條件不變,

,

拋物線的對(duì)稱軸為,

代入得,

拋物線與直線有交點(diǎn),

拋物線的頂點(diǎn)在下,

,即

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,中點(diǎn)、中點(diǎn),延長(zhǎng)線上一點(diǎn),連接并延長(zhǎng)交與點(diǎn),連接,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)分別在梯形的兩腰上,且,若,,,則的值為( )

A. 15.6 B. 15 C. 19 D. 無(wú)法計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有六張分別標(biāo)有數(shù)字,,,,的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為,將該卡片上的數(shù)字加記為,則函數(shù)的圖象不過點(diǎn)且方程有實(shí)數(shù)解的概率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下說(shuō)法合理的是(

A. 某彩票中獎(jiǎng)的機(jī)會(huì)是,那么某人買了張彩票,肯定有一張中獎(jiǎng)

B. 小美在次拋圖釘?shù)脑囼?yàn)中發(fā)現(xiàn)了次釘尖朝上,據(jù)此他認(rèn)為釘尖朝上的概率為

C. 拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面反面的概率相等,因此拋次的話,一定有正面”,反面

D. 在一次課堂上進(jìn)行的試驗(yàn)中,甲、乙兩組同學(xué)估計(jì)一枚硬幣落地后正面朝上的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,熒光屏上的甲、乙兩個(gè)光斑(可看作點(diǎn))分別從相距8cmA,B兩點(diǎn)同時(shí)開始沿線段AB運(yùn)動(dòng),運(yùn)動(dòng)工程中甲光斑與點(diǎn)A的距離S1(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點(diǎn)B的距離S2(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中P1O1Q1P2Q2O2,下列敘述正確的是( 。

A. 甲光斑從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)速度是從點(diǎn)B到點(diǎn)A的運(yùn)動(dòng)速度的4

B. 乙光斑從點(diǎn)AB的運(yùn)動(dòng)速度小于1.5cm/s

C. 甲乙兩光斑全程的平均速度一樣

D. 甲乙兩光斑在運(yùn)動(dòng)過程中共相遇3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面坐標(biāo)系中,對(duì)于點(diǎn)和點(diǎn),給出如下定義:

,則稱點(diǎn)為點(diǎn)的變限點(diǎn)。例如:點(diǎn)的變限點(diǎn)的坐標(biāo),點(diǎn) 的變限點(diǎn)的坐標(biāo)。

1)點(diǎn)的變限點(diǎn)的坐標(biāo)是 ;點(diǎn)的變限點(diǎn)的坐標(biāo)是 .

2)已知直線軸交于點(diǎn),點(diǎn)在直線上,其變限點(diǎn)為,若為坐標(biāo)原點(diǎn))的面積等于,求點(diǎn)的坐標(biāo).

3)已知點(diǎn)在函數(shù)的圖象上,其變限點(diǎn)的縱坐標(biāo)的取值范圍是,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分)如圖,已知AB⊙O的直徑,點(diǎn)PBA的延長(zhǎng)線上,PD⊙O于點(diǎn)D,過點(diǎn)BBE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E

1)求證:AB=BE;

2)若PA=2,cosB=,求⊙O半徑的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案