已知:如圖,等邊△ABC的邊長(zhǎng)是4,在等邊△ABC上再疊加一個(gè)Rt△DEF,∠DEF=90°,∠F=30°,等邊△ABC的邊BC與EF重合,頂點(diǎn)E與B重合,頂點(diǎn)A在DF上,
(1)求邊EF的長(zhǎng);
(2)若△ABC沿EF方向從E運(yùn)動(dòng)到F,速度為1m/s,時(shí)間為x秒,請(qǐng)你用含x的代數(shù)式表示線段AM的長(zhǎng);
(3)假設(shè)Rt△DEF和等邊△ABC重合部分的面積是y,請(qǐng)你寫出y與x之間的函數(shù)關(guān)系式;
(4)重合部分的面積與Rt△DEF的面積的比有可能是7:24嗎?如果有可能,請(qǐng)求出此時(shí)x的值;如果沒有可能,請(qǐng)說明理由.
分析:(1)先根據(jù)△ABC是等邊三角形可知∠ACB=60°,再由三角形外角的性質(zhì)即可得出∠CAF=30°,故可得出AC=CF=4,故可得出EF的長(zhǎng);
(2)根據(jù)速度為1m/s,時(shí)間為x秒,可知BE=x,BF=8-x,再由△ABC是等邊三角形可知∠A=60°,由∠F=30°得出∠ANM=90°,根據(jù)直角三角形的性質(zhì)得出BN=
1
2
BF=
8-x
2
,AN=4-BN=4-
8-x
2
=
x
2
,再根據(jù)M=2AN即可得出結(jié)論;
(3)根據(jù)(3)中求出的AN、AM的長(zhǎng)可用x表示出△AMN的面積,再由y=S△ABC-S△AMN即可得出結(jié)論;
(4)根據(jù)Rt△DEF中,EF=8,∠F=30°可求出DE的長(zhǎng),進(jìn)而得出△DEF的面積,再由(3)中y與x的關(guān)系式即可得出結(jié)論.
解答:解;(1)∵△ABC是等邊三角形,
∴∠ACB=60°,
∵∠ACB是△ACF的外角,∠F=30°,
∴∠CAF=∠ACB-∠F=60°-30°=30°,
∴AC=CF=4,
∴EF=BC+CF=4+4=8;

(2)∵速度為1m/s,時(shí)間為x秒,
∴BE=x,BF=8-x,
∵△ABC是等邊三角形,
∴∠A=60°,
∵∠F=30°,
∴∠ANM=90°,
∴BN=
1
2
BF=
8-x
2
;
∴AN=4-BN=4-
8-x
2
=
x
2
,
∵由(1)知,∠AMN=∠F=30°,
∴AM=2AN=2×
x
2
=x;

(3)∵由(2)知,AN=
x
2
,AM=x,
∴MN=
3
x
2
,
∴S△AMN=
1
2
AN•MN=
1
2
×
x
2
×
3
x
2
=
3
x2
8

∵△ABC是邊長(zhǎng)為4的等邊三角形,
∴S△ABC=
1
2
×4×2
3
=4
3
,
∴y=S△ABC-S△AMN=4
3
-
3
x2
8
(0≤x≤8);

(4)存在.
∵Rt△DEF中,EF=8,∠F=30°,
∴DE=
8
3
3
,
∴S△DEF=
1
2
EF•DE=
1
2
×8×
8
3
3
=
32
3
3
,
∵由(3)知,y=4
3
-
3
x2
8
(0≤x≤8),
4
3
-
3
x2
8
32
3
3
=
7
24
,解得x=
4
14
3
或x=-
4
14
3
(不合題意),
∴存在重合部分的面積與Rt△DEF的面積的比是7:24.
點(diǎn)評(píng):本題考查的是相似形綜合題,涉及到直角三角形的性質(zhì)、銳角三角函數(shù)的定義、三角形的面積等知識(shí),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是劣弧
BC
上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BP至D,使BD=AP,連接CD.
(1)若AP過圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說精英家教網(wǎng)明理由;
(2)若AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為6,點(diǎn)D、E分別在AB、AC上,且AD=AE=2,直線l過點(diǎn)A,且l∥BC,若點(diǎn)F從點(diǎn)B開始以每秒1個(gè)單位長(zhǎng)的速度沿射線BC方向運(yùn)動(dòng),設(shè)F點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t>0時(shí),直線DF交l于點(diǎn)G,GE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)H,AB與GH相交于點(diǎn)O.
(1)當(dāng)t為何值時(shí),AG=AE?
(2)請(qǐng)證明△GFH的面積為定值;
(3)當(dāng)t為何值時(shí),點(diǎn)F和點(diǎn)C是線段BH的三等分點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,等邊三角形ABC邊長(zhǎng)為2,以BC為對(duì)稱軸將△ABC翻折,得到四邊形ABDC,將此四邊形放在直角坐標(biāo)系xOy中,使AB在x軸上,點(diǎn)D在直線y=
3
2
x-
3
上.
(1)根據(jù)上述條件畫出圖形,并求出A、B、D、C的坐標(biāo);
(2)若直線y=
3
2
x-
3
與y軸交于點(diǎn)P,拋物線y=ax2+bx+c,過A、B、P三點(diǎn),求這條拋物線的函數(shù)關(guān)系式;
(3)求出拋物線的頂點(diǎn)坐標(biāo),并指出這個(gè)點(diǎn)在△ABC的什么特殊位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等邊△ABC的邊長(zhǎng)為2,E為BC邊的中點(diǎn),分別以頂點(diǎn)B、C為圓心,BE、CE長(zhǎng)為半徑畫弧交AB、AC于點(diǎn)D、F.求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊三角形ABD與等邊三角形ACE具有公共頂點(diǎn)A,連接CD,BE,交于點(diǎn)P.
(1)觀察度量,∠BPC的度數(shù)為
120°
120°
.(直接寫出結(jié)果)
(2)若繞點(diǎn)A將△ACE旋轉(zhuǎn),使得∠BAC=180°,請(qǐng)你畫出變化后的圖形.(示意圖)
(3)在(2)的條件下,求出∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案