如圖(1),直線y=kx-k2(k為常數(shù),且k>0)與y軸交于點C,與拋物線y=ax2有唯一公共點B,點B在x軸上的正投影為點E,已知點D(0,4).
(1)求拋物線的解析式;
(2)是否存在實數(shù)k,使經(jīng)過D,O,E三點的圓與拋物線的交點恰好為B?若存在,請求出時k的值;若不存在,請說明理由.
(3)如圖(2),連接CE,已知點F(0,1),直線FA與CE相交于點M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個等式中有一個恒成立.請判斷哪一個恒成立,并證明這個成立的結(jié)論.
(1)∵直線y=kx-k2與拋物線y=ax2有唯一公共點B,
∴kx-k2=ax2,即ax2-kx+k2=0有兩個相等的實數(shù)根,
∴(-k)2-4ak2=0,而k>0,
∴a=
1
4
,
∴y=
1
4
x2;

(2)存在實數(shù)k,使得經(jīng)過D、O、E三點的圓與拋物線的交點剛好為點B,
y=kx-k2
y=
1
4
x2
的解為
x=2k
y=k2
,
∴點B的坐標為(2k,k2),
又∵點B在x軸上的正投影為點E,連接BE,
則BE⊥x軸于E,
∴E(2k,0),
∴DE⊥OB,DF=EF=OF,
連接OB、DE,則OB、DE均為過點D、0、E三點的圓的直徑,
∴Rt△ODE≌Rt△EBO(HL),
∴BE=DO,
∵D(0,4),
∴k2=4,
∴k=2(k>0);

(3)結(jié)論②∠EAM=∠ACF成立,
對y=kx-k2,令y=0,得x=k,
∴A(k,0),
∴OA=k,
令x=0,得y=-k2,
∴C(0,-k2),
∴OC=k2,
又∵F(0,1),
∴OF=1,
∴OA2=OF•OC,
OA
OF
=
OC
OA
,
又∵∠FOA=∠AOC=90°,
∴△AFO△CAO,
∴∠FAO=∠ACF,而∠FAO=∠EAM,
∴∠EAM=∠ACF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-4x+c的圖象與x軸交于點A(-1,0)、點C,與y軸交于點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標,并求出△ABP周長的最小值;
(3)在線段AC上是否存在點E,使以C、P、E為頂點的三角形與三角形ABC相似?若存在寫出所有點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,與x軸另一交點為D,與y軸交于點C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式;
(2)如圖,連接AC,在拋物線上是否存在點P,使∠ACD+∠ACP=45°?若存在,求出點P的坐標;若不存在,請說明理由;
(3)連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,
①點E在運動過程中四邊形OEAF的面積是否發(fā)生變化,并說明理由;
②當(dāng)EF分四邊形OEAF的面積為1:2兩部分時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如圖,P為AD上的一點,滿足∠BPC=∠A,求AP的長;
(2)如果點P在AD邊上移動(點P與點A、D不重合),且滿足∠BPE=∠A,PE交直線BC于點E,同時交直線DC于點Q.
①當(dāng)點Q在線段DC的延長線上時,設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)CE=1時,寫出AP的長.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如如在直角坐標系中,二次函數(shù)y=x2-4x+中的頂點是C,與x軸相交于A,B兩點(A在B的左邊).
(1)若點B的橫坐標xB滿足5<xB<c,求中的取值范圍;
(2)若tan∠ACB=
4
,求中的值;
(十)當(dāng)中=c時,點D,E同時從點B出發(fā),分別向左、向右在拋物線它移動,點D,E在x軸它的正投影分別為M,N,設(shè)BM=m(m<cB),BN=n,當(dāng)m,n滿足怎樣的等量關(guān)系時,△cDE的內(nèi)心在x軸它?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=2x2+bx-2經(jīng)過點A(1,0).
(1)求b的值;
(2)設(shè)P為此拋物線的頂點,B(a,0)(a≠1)為拋物線上的一點,Q是坐標平面內(nèi)的點,若以A、B、P、Q為頂點的四邊形為平行四邊形,這樣的Q點有幾個,并求出PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標;
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
3
4
x2+bx+c與坐標軸交于A、B、C三點,A點的坐標為(-1,0),過點C的直線y=
3
4t
x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案