如圖,已知二次函數(shù)y=ax2-4x+c的圖象與x軸交于點A(-1,0)、點C,與y軸交于點B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對稱軸上存在一點P,使得△ABP的周長最。埱蟪鳇cP的坐標,并求出△ABP周長的最小值;
(3)在線段AC上是否存在點E,使以C、P、E為頂點的三角形與三角形ABC相似?若存在寫出所有點E的坐標;若不存在,請說明理由.
(1)根據(jù)題意,得
0=a×(-1)2-4×(-1)+c
-5=a×02-4××0+c

解得
a=1
c=-5
,
故二次函數(shù)的表達式為y=x2-4x-5;

(2)令y=0,得二次函數(shù)y=x2-4x-5的圖象與x軸
的另一個交點坐標C(5,0).
由于P是對稱軸x=2上一點,
連接AB,由于AB=
OA2+BO2
=
26
,
要使△ABP的周長最小,只要PA+PB最。
由于點A與點C關(guān)于對稱軸x=2對稱,連接BC交對稱軸于點P,
則PA+PB=BP+PC=BC,根據(jù)兩點之間,線段最短,可得PA+PB的最小值為BC.
因而BC與對稱軸x=2的交點P就是所求的點.
設(shè)直線BC的解析式為y=kx+b,根據(jù)題意,可得:
b=-5
0=5k+b
,
解得
k=1
b=-5
,
所以直線BC的解析式為y=x-5.
因此直線BC與對稱軸x=2的交點坐標是方程組的解,
解得
x=2
y=-3

所求的點P的坐標為(2,-3).

(3)存在.
∵A(-1,0),C(5,0),
∴AC=6,
∵P(2,-3),C(5,0),
∴PC=3
2
,
∵B(0,-5),C(5,0),
∴BC=5
2
,
當△PEC△ABC,
EC
BC
=
PC
AC

EC
5
2
=
3
2
6
,
解得:EC=5,
∴E(0,0);
當△EPC△ABC,
EC
AC
=
PC
BC

EC
6
=
3
2
5
2
,
解得:EC=3.6,
∴OE=5-3.6=1.4,
故E點坐標為:(1.4,0),
綜上所述:以C、P、E為頂點的三角形與三角形ABC相似,點E的坐標為:(0,0),(1.4,0).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過(1,-1)、(2,1)、(-1,1)三點,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=
1
2
x2+(k+
1
2
)x+(k+1)(k為常數(shù))與x軸交于A(x1,0)、B(x2,0)(x1<0<x2)兩點,與y軸交于C點,且滿足(OA+OB)2=OC2+16.
(1)求此拋物線的解析式;
(2)設(shè)M、N是拋物線在x軸上方的兩點,且到x軸的距離均為1,點P是拋物線的頂點,問:過M、N、C三點的圓與直線CP是否只有一個公共點C?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直線y=-2x+4交x軸于點A,交y軸于點B,點C為x軸上一點,AC=1,且OC<OA.拋物線y=ax2+bx+c(a≠0)經(jīng)過點A、B、C.
(1)求該拋物線的表達式;
(2)點D的坐標為(-3,0),點P為線段AB上的一點,當銳角∠PDO的正切值是
1
2
時,求點P的坐標;
(3)在(2)的條件下,該拋物線上的一點E在x軸下方,當△ADE的面積等與四邊形APCE的面積時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形OABC中,OA=8,OC=4,OA、OC分別在x,y軸上,點D在OA上,且CD=AD,
(1)求直線CD的解析式;
(2)求經(jīng)過B、C、D三點的拋物線的解析式;
(3)在上述拋物線上位于x軸下方的圖象上,是否存在一點P,使△PBC的面積等于矩形的面積?若存在,求出點P的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在布袋中裝有兩個大小一樣,質(zhì)地相同的球,其中一個為紅色,一個為白色、模擬“摸出一個球是白球”的機會,可以用下列哪種替代物進行實驗( 。
A.“拋擲一枚普通骰子出現(xiàn)1點朝上”的機會
B.“拋擲一枚啤酒瓶蓋出現(xiàn)蓋面朝上”的機會
C.“拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)正面朝上”的機會
D.“拋擲一枚普通圖釘出現(xiàn)針尖觸地”的機會

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,半圓O的直徑AB=4,與半圓O內(nèi)切的動圓O1與AB切于點M,設(shè)⊙O1的半徑為y,AM的長為x,則y關(guān)于x的函數(shù)關(guān)系式是______(要求寫出自變量x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系中,二次函數(shù)y=a(x-2)2-1圖象的頂點為P,與x軸交點為A、B,與y軸交點為C,連接BP并延長交y軸于點D.
(1)寫出點P的坐標;
(2)連接AP,如果△APB為等腰直角三角形,求a的值及點C、D的坐標;
(3)在(2)的條件下,連接BC、AC、AD,點E(0,b)在線段CD(端點C、D除外)上,將△BCD繞點E逆時針方向旋轉(zhuǎn)90°,得到一個新三角形.設(shè)該三角形與△ACD重疊部分的面積為S,根據(jù)不同情況,分別用含b的代數(shù)式表示S,選擇其中一種情況給出解答過程,其它情況直接寫出結(jié)果;判斷當b為何值時,重疊部分的面積最大寫出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),直線y=kx-k2(k為常數(shù),且k>0)與y軸交于點C,與拋物線y=ax2有唯一公共點B,點B在x軸上的正投影為點E,已知點D(0,4).
(1)求拋物線的解析式;
(2)是否存在實數(shù)k,使經(jīng)過D,O,E三點的圓與拋物線的交點恰好為B?若存在,請求出時k的值;若不存在,請說明理由.
(3)如圖(2),連接CE,已知點F(0,1),直線FA與CE相交于點M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個等式中有一個恒成立.請判斷哪一個恒成立,并證明這個成立的結(jié)論.

查看答案和解析>>

同步練習冊答案