【題目】如圖,在等邊ABC中,線段AMBC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊CDE,連結(jié)BE

(1)求∠CAM的度數(shù);

(2)若點(diǎn)D在線段AM上時(shí),求證:ADCBEC;

(3)當(dāng)動(dòng)D直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O,試判斷AOB是否為定值?并說(shuō)明理由.

【答案】130°;(2)答案見(jiàn)解析;(3AOB是定值,∠AOB=60°.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)可以直接得出結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)就可以得出ACBCDCEC,∠ACB=∠DCE=60°,由等式的性質(zhì)就可以∠BCE=∠ACD,根據(jù)SAS就可以得出△ADC≌△BEC;

(3)分情況討論當(dāng)點(diǎn)D在線段AM上時(shí),如圖1,由(2)可知△ACD≌△BCE,就可以求出結(jié)論;當(dāng)點(diǎn)D在線段AM的延長(zhǎng)線上時(shí)如圖2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出結(jié)論當(dāng)點(diǎn)D在線段MA的延長(zhǎng)線上時(shí),如圖3,通過(guò)得出△ACD≌△BCE同樣可以得出結(jié)論

1)∵△ABC是等邊三角形,∴∠BAC=60°.

∵線段AMBC邊上的中線,∴∠CAMBAC,∴∠CAM=∠BAM=30°.

(2)∵△ABC與△DEC都是等邊三角形,∴ACBCCDCE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE

在△ADC和△BEC中,∵,∴△ACD≌△BCE(SAS);

(3)∠AOB是定值,∠AOB=60°.理由如下

當(dāng)點(diǎn)D在線段AM上時(shí),如圖1,由(2)可知△ACD≌△BCE,則∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°.

∵△ABC是等邊三角形,線段AMBC邊上的中線,∴AM平分∠BAC,,∴∠BOA=90°﹣30°=60°.

當(dāng)點(diǎn)D在線段AM的延長(zhǎng)線上時(shí),如圖2.

∵△ABC與△DEC都是等邊三角形,∴ACBC,CDCE,∠ACB=∠DCE=60°,∴∠ACB+∠DCB=∠DCB+∠DCE,∴∠ACD=∠BCE

在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=30°.

由(1):∠BAM=30°,∴∠BOA=90°﹣30°=60°.

當(dāng)點(diǎn)D在線段MA的延長(zhǎng)線上時(shí)

∵△ABC與△DEC都是等邊三角形,∴ACBC,CDCE,∠ACB=∠DCE=60°,∴∠ACD+∠ACE=∠BCE+∠ACE=60°,∴∠ACD=∠BCE

在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD

由(1)得:∠CAM=30°,∴∠CBE=∠CAD=150°,∴∠CBO=30°,∠BAM=30°,∴∠BOA=90°﹣30°=60°.

綜上所述當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),∠AOB是定值,∠AOB=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),完成下列各題:

將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點(diǎn)坐標(biāo)、對(duì)稱軸.

在直角坐標(biāo)系中,畫出它的圖象

根據(jù)圖象說(shuō)明:當(dāng)取何值時(shí),的增大而增大?

當(dāng)取何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,PO⊥AB,PE⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,切點(diǎn)為E,AEPO于點(diǎn)F.

(1)求證:PEF是等腰三角形;

(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點(diǎn)G.若EG=5,sinC=,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一筆直的公路連接MN兩地,甲車從M地駛往N地,速度為60km/h,乙車從M地駛往N地,速度為40km/h,丙車從N地駛往M地,速度為80km/h,三輛車同時(shí)出發(fā),先到目的地的車停止不動(dòng).途中甲車發(fā)生故障,于是停車修理了2.5h,修好后立即按原速駛往N地.設(shè)甲車行駛的時(shí)間為th),甲、丙兩車之間的距離為S1km).甲、乙兩車離M地的距離為S2km),S1t之間的關(guān)系如圖1所示,S2t之間的關(guān)系如圖2所示.根據(jù)題中的信息回答下列問(wèn)題:

1)①圖1中點(diǎn)C的實(shí)際意義是   ;

②點(diǎn)B的橫坐標(biāo)是   ;點(diǎn)E的橫坐標(biāo)是   ;點(diǎn)Q的坐標(biāo)是   ;

2)請(qǐng)求出圖2中線段QR所表示的S2t之間的關(guān)系式;

3)當(dāng)甲、乙兩車距70km時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書中,用如圖所示的三角形解釋二項(xiàng)式乘方(a+bn的展開式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”.根據(jù)“楊輝三角”請(qǐng)計(jì)算(a+b64的展開式中第63項(xiàng)的系數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材呈現(xiàn):如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第96頁(yè)的部分內(nèi)容.

請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出角平分線的性質(zhì)定理完整的證明過(guò)程.

定理應(yīng)用:

如圖②,在四邊形ABCD中,∠B=∠C,點(diǎn)E在邊BC上,AE平分∠BAD,DE平分∠ADC

1)求證:BECE

2)若四邊形ABCD的周長(zhǎng)為24,BE2,面積為30,則△ABE的邊AB的高的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(﹣3,﹣3).

(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;

(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;

(3)在(2)的條件下,直線BCy軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;

(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察與思考:閱讀下列材料,并解決后面的問(wèn)題

在銳角△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,過(guò)AADBCD(如圖(1)),則sinB=,sinC=,即ADcsinBADbsinC,于是csinBbsinC,即,同理有:,所以

即:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等在銳角三角形中,若已知三個(gè)元素(至少有一條邊),運(yùn)用上述結(jié)論和有關(guān)定理就可以求出其余三個(gè)未知元素.

根據(jù)上述材料,完成下列各題.

(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A   ;AC   

(2)自從去年日本政府自主自導(dǎo)“釣魚島國(guó)有化”鬧劇以來(lái),我國(guó)政府靈活應(yīng)對(duì),現(xiàn)如今已對(duì)釣魚島執(zhí)行常態(tài)化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測(cè)得A在我漁政船的北偏西30°的方向上,隨后以40海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測(cè)得釣魚島A在的北偏西75°的方向上,求此時(shí)漁政204船距釣魚島A的距離AB.(結(jié)果精確到0.01,2.449)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:過(guò)圓外一點(diǎn)作圓的切線.

已知:P⊙O外一點(diǎn).

求作:經(jīng)過(guò)點(diǎn)P⊙O的切線.

小敏的作法如下:如圖,

(1)連接OP,作線段OP的垂直平分線MNOP于點(diǎn)C.

(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙OA,B兩點(diǎn).

(3)作直線PA,PB.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是   ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是   .請(qǐng)寫出證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案