【題目】(1)把下列各數(shù)分別填在相應(yīng)的集合里:
, , ,,0, ,……
正有理數(shù)集合:{ …}
整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
(2)在下面的數(shù)軸上表示下列各數(shù),并按照從小到大的順序用“<”號(hào)連接起來
,,, ,
【答案】(1)正有理數(shù)集合:{ ,,…}
整數(shù)集合:{,0, …}
分?jǐn)?shù)集合:{, , …}
(2)數(shù)軸見解析;
從小到大的順序?yàn)椋?/span>
【解析】
(1)根據(jù)有理數(shù)的分類,有理數(shù)分為正有理數(shù)、負(fù)有理數(shù)和0,也可分為整數(shù)和分?jǐn)?shù),進(jìn)行判斷;(2)根據(jù)數(shù)軸上的點(diǎn)表示的數(shù),右邊的總比左邊的大進(jìn)行比較大小.
解:(1)∵按照正負(fù)性把有理數(shù)分為正有理數(shù)、負(fù)有理數(shù)和0;按照數(shù)的性質(zhì)把有理數(shù)分為整數(shù)和分?jǐn)?shù),
∴正有理數(shù)集合:{ ,,…}
整數(shù)集合:{,0, …}
分?jǐn)?shù)集合:{, , …}
(2)數(shù)字 ,,, ,在數(shù)軸上表示如圖:
從小到大的順序?yàn)椋?/span>
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人從A地出發(fā)前往B地,甲先出發(fā)1分鐘后,乙再出發(fā),乙出發(fā)一段時(shí)間后返回A地取物品,甲、乙兩人同時(shí)達(dá)到B地和A地,并立即掉頭相向而行直至相遇,甲、乙兩人之間相距的路程y(米)與甲出發(fā)的時(shí)間x(分鐘)之間的關(guān)系如圖所示,則甲、乙兩人最后相遇時(shí),乙距B地的路程是_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是AB上的一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)如圖1,當(dāng)點(diǎn)C,E,F在直線AB的同一側(cè)時(shí),若∠AOC=40°,求∠BOE和∠COF的度數(shù);
(2)在(1)的條件下,∠BOE和∠COF有什么數(shù)量關(guān)系?請(qǐng)直接寫出結(jié)論,不必說明理由;
(3)如圖2,當(dāng)點(diǎn)C,E,F分別在直線AB的兩側(cè)時(shí),若∠AOC=β,那么(2)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)寫出結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.
(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.
(2)求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.
(3)求機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,BD=3cm,DC=8cm,AD=4cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線BA﹣AC向終點(diǎn)C做勻速運(yùn)動(dòng),點(diǎn)P在線段BA上的運(yùn)動(dòng)速度是5cm/s;在線段AC上的運(yùn)動(dòng)速度是cm/s,當(dāng)點(diǎn)P不與點(diǎn)B、C重合時(shí),過點(diǎn)P作PQ⊥BC于點(diǎn)Q,將△PBQ繞PQ的中點(diǎn)旋轉(zhuǎn)180°得到△QB′P,設(shè)四邊形PBQB′與△ABD重疊部分圖形的面積為y(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)用含x的代數(shù)式表示線段AP的長.
(2)當(dāng)點(diǎn)P在線段BA上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.
(3)當(dāng)經(jīng)過點(diǎn)B′和△ADC一個(gè)頂點(diǎn)的直線平分△ADC的面積時(shí),直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級(jí)學(xué)生體育測(cè)試成績情況,以九年(1)班學(xué)生的體育測(cè)試成績?yōu)闃颖,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分﹣74分;D級(jí):60分以下)
(1)寫出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比為 ,C級(jí)學(xué)生所在的扇形圓心角的度數(shù)為 ;
(2)該班學(xué)生體育測(cè)試成績的中位數(shù)落在等級(jí) 內(nèi);
(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,AB=10,BC=8,CD=∠DAC=45°,∠DCA=15°.
(1)求△ADC的面積;
(2)若E為AB的中點(diǎn),求線段CE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com