分析 由條件可證得△ABN∽△BNM∽△ABM,且可求得線段AM的長度,利用對應(yīng)線段的比相等可求得AN和MN,進一步可得到$\frac{AO}{AM}=\frac{AN}{AC}$,且∠CAM=∠NAO,可證得△AON∽△AMC,利用相似三角形的性質(zhì)可求得ON.
解答 解:∵AB=4,BM=2,
∴AM=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∵∠ABM=90°,BN⊥AM,
∴△ABN∽△BNM∽△AMB,
∴AB2=AN×AM,BM2=MN×AM,
∴AN=$\frac{8\sqrt{5}}{5}$,MN=$\frac{2\sqrt{5}}{5}$,
∵AB=4,CD=4,
∴AC=4$\sqrt{2}$,
∴AO=2$\sqrt{2}$,
∵$\frac{AO}{AM}=\frac{AN}{AC}$=$\frac{\sqrt{10}}{5}$,且∠CAM=∠NAO
∴△AON∽△AMC,
∴$\frac{ON}{MC}$=$\frac{AO}{AM}$,即$\frac{ON}{6}$=$\frac{2\sqrt{2}}{2\sqrt{5}}$,
∴ON=$\frac{6\sqrt{10}}{5}$.
故答案為:$\frac{6\sqrt{10}}{5}$.
點評 本題考查了正方形性質(zhì)、勾股定理、相似三角形的判定與性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | x軸的負半軸上 | B. | 第二象限 | C. | y軸的正半軸上 | D. | 坐標原點 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 8056 | B. | 8050 | C. | 8054 | D. | 8052 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 40° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com